Consider the following two statements :
Statement I: For any two non-zero complex numbers $$z_1, z_2,(|z_1|+|z_2|)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right) \text {, and }$$
Statement II : If $$x, y, z$$ are three distinct complex numbers and $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ are three positive real numbers such that $$\frac{\mathrm{a}}{|y-z|}=\frac{\mathrm{b}}{|z-x|}=\frac{\mathrm{c}}{|x-y|}$$, then $$\frac{\mathrm{a}^2}{y-z}+\frac{\mathrm{b}^2}{z-x}+\frac{\mathrm{c}^2}{x-y}=1$$.
Between the above two statements,
For the function
$$f(x)=\sin x+3 x-\frac{2}{\pi}\left(x^2+x\right), \text { where } x \in\left[0, \frac{\pi}{2}\right],$$
consider the following two statements :
(I) $$f$$ is increasing in $$\left(0, \frac{\pi}{2}\right)$$.
(II) $$f^{\prime}$$ is decreasing in $$\left(0, \frac{\pi}{2}\right)$$.
Between the above two statements,
Let $$a_1, a_2, a_3, \ldots$$ be in an arithmetic progression of positive terms.
Let $$A_k=a_1^2-a_2^2+a_3^2-a_4^2+\ldots+a_{2 k-1}^2-a_{2 k}^2$$.
If $$\mathrm{A}_3=-153, \mathrm{~A}_5=-435$$ and $$\mathrm{a}_1^2+\mathrm{a}_2^2+\mathrm{a}_3^2=66$$, then $$\mathrm{a}_{17}-\mathrm{A}_7$$ is equal to ________.