JEE MAIN - Mathematics (2024 - 5th April Morning Shift - No. 22)

From a lot of 10 items, which include 3 defective items, a sample of 5 items is drawn at random. Let the random variable $$X$$ denote the number of defective items in the sample. If the variance of $$X$$ is $$\sigma^2$$, then $$96 \sigma^2$$ is equal to __________.
Answer
56

Explanation

$$x$$ 0 1 2 3
$$P(x)$$ $$
\frac{{ }^7 C_5}{{ }^{10} C_5}=\frac{1}{12}
$$
$$
\frac{C_4 \cdot{ }^3 C_1}{{ }^{10} C_5}=\frac{5}{12}
$$
$$
\frac{{ }^7 C_3 \cdot{ }^3 C_2}{{ }^{10} C_5}=\frac{5}{12}
$$
$$
\frac{{ }^7 C_2 \cdot{ }^3 C_3}{{ }^{10} C_5}=\frac{1}{12}
$$
$$xP(x)$$ 0 $$\frac{5}{12}$$ $$\frac{10}{12}$$ $$\frac{3}{12}$$

$$\begin{aligned} & \mu=\sum x P(x)=0+\frac{5}{12}+\frac{10}{12}+\frac{3}{12}=\frac{3}{2} \\ & \sigma^2=\sum(x-\mu) P(x)=\sum\left(x-\frac{3}{2}\right)^2 P(x) \\ & =\frac{9}{4} \times \frac{1}{12}+\frac{1}{4} \times \frac{5}{12}+\frac{1}{4} \times \frac{5}{12}+\frac{9}{4} \times \frac{1}{12}=\frac{7}{12} \end{aligned}$$

$$\Rightarrow \sigma^2 \cdot 96=8 \times 7=56$$

Comments (0)

Advertisement