JEE MAIN - Mathematics (2024 - 5th April Morning Shift - No. 6)

Let A and B be two square matrices of order 3 such that $$\mathrm{|A|=3}$$ and $$\mathrm{|B|=2}$$. Then $$|\mathrm{A}^{\mathrm{T}} \mathrm{A}(\operatorname{adj}(2 \mathrm{~A}))^{-1}(\operatorname{adj}(4 \mathrm{~B}))(\operatorname{adj}(\mathrm{AB}))^{-1} \mathrm{AA}^{\mathrm{T}}|$$ is equal to :
32
81
64
108

Explanation

$$\begin{aligned} & |A|=3 \\ & |B|=2 \\ & \left.\left|A^T\right||A| \mid(\operatorname{adj}(2 A))^{-1}\|\operatorname{adj}(4 B)\|(\operatorname{adj}(A B))^{-1}\right)|A|\left|A^T\right| \\ & 3 \cdot 3 \frac{1}{64 \cdot 9}(64)^2 \cdot 4 \cdot \frac{1}{9 \cdot 4} 3 \cdot 3 \\ & =64 \end{aligned}$$

Comments (0)

Advertisement