JEE MAIN - Mathematics (2024 - 5th April Morning Shift - No. 29)
If the constant term in the expansion of $$\left(1+2 x-3 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$$ is $$\mathrm{p}$$, then $$108 \mathrm{p}$$ is equal to ________.
Answer
54
Explanation
$$\text { General term of }\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$$
$$T_{r+1}={ }^9 C_r\left(\frac{3}{2} x^2\right)^{9-r}\left(-\frac{1}{3 x}\right)^r={ }^9 C_r(-1)^r 3^{9-2 r} 2^{r-9} x^{18-35}$$
Constant term in expansion of $$\left(1+2 x-3 x^3\right)$$
$$\begin{aligned} & \left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9 \\ & =T_7-3 T_8={ }^9 C_6 3^{-3} \cdot 2^{-3}+3{ }^9 C_7 \cdot 3^{-5} \cdot 2^{-2} \\ & =\frac{3 \times 4 \times 7}{3^3 \cdot 2^3}+\frac{3 \times 9 \times 4}{3^5 \times 2^2}= \\ & p=\frac{42+12}{108}=\frac{54}{108} \\ & 108 p=54 \end{aligned}$$
Comments (0)
