JEE MAIN - Mathematics (2024 - 5th April Morning Shift - No. 26)

If $$S=\{a \in \mathbf{R}:|2 a-1|=3[a]+2\{a \}\}$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$ and $$\{t\}$$ represents the fractional part of $$t$$, then $$72 \sum_\limits{a \in S} a$$ is equal to _________.
Answer
18

Explanation

$$\begin{aligned} & S:\{a \in R:|2 a-1|=3[a]+2\{a\}\} \\ & |2 a-1|=3[a]+2(a-[a]) \\ & |2 a-1|=[a]+2 a \end{aligned}$$

Case I: If $$0 < a < \frac{1}{2}$$

$$\begin{aligned} & 1-2 a=0+2 a \\ & \Rightarrow a=\frac{1}{4} \end{aligned}$$

Case II: If $$\frac{1}{2} < a < 1$$

$$2 a-1=0+2 a$$

No solution

Case III: If $$1 \leq a<2$$

$$2 a-1=1+2 a$$

$$\Rightarrow$$ No solution

$$\therefore$$ only solution is $$a=\frac{1}{4}$$

$$72 \sum_\limits{a \in S} a=72 \times \frac{1}{4}=18$$

Comments (0)

Advertisement