JEE MAIN - Mathematics (2024 - 5th April Morning Shift - No. 16)

The value of $$\int_\limits{-\pi}^\pi \frac{2 y(1+\sin y)}{1+\cos ^2 y} d y$$ is :
$$\frac{\pi}{2}$$
$$\pi^2$$
$$\frac{\pi^2}{2}$$
$$2 \pi^2$$

Explanation

$$\begin{aligned} & I=\int_\limits{-\pi}^\pi \frac{2 y(1+\sin y)}{1+\cos ^2 y} d y \\ & =\int_\limits0^\pi\left(\frac{2 y(1+\sin y)}{1+\cos ^2 y}+\frac{-2 y(1-\sin y)}{1+\cos ^2 y}\right) d y \\ & =\int_\limits0^\pi\left(\frac{2 y+2 y \sin y-2 y+2 y \sin y}{1+\cos ^2 y}\right) d y \end{aligned}$$

$$I=4 \int_0^\pi\left(\frac{y \sin }{1+\cos ^2 y}\right) d y \quad \text{... (1)}$$

$$\begin{aligned} & I=4 \int_\limits0^\pi\left(\frac{(\pi-y) \sin (\pi-)}{1+\cos ^2(\pi-y)}\right) d y \\ & I=4\left\lfloor\int_\limits0\left(\frac{\pi \sin y}{1+\cos ^2 y}\right) d y-\int_\limits0^\pi \frac{y \sin y}{1+\cos ^2 y} d y\right\rfloor \quad \text{... (2)} \end{aligned}$$

Adding equation (1) and (2)

$$\begin{aligned} & 2 I=4 \int_\limits0^\pi\left(\frac{\pi \sin y}{1+\cos ^2 y}\right) d y \\ & I=2 \pi \int_\limits0^\pi \frac{\sin y}{1+\cos ^2 y} d y \\ & =2 \pi \times \frac{\pi}{2} \\ & =\pi^2 \end{aligned}$$

Comments (0)

Advertisement