JEE MAIN - Mathematics (2024 - 5th April Morning Shift - No. 20)
If $$y=y(x)$$ is the solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=\sin (2 x), y(0)=\frac{3}{4}$$, then $$y\left(\frac{\pi}{8}\right)$$ is equal to :
$$\mathrm{e}^{-\pi / 8}$$
$$\mathrm{e}^{\pi / 4}$$
$$\mathrm{e}^{-\pi / 4}$$
$$\mathrm{e}^{\pi / 8}$$
Explanation
$$\begin{aligned}
& \frac{d y}{d x}+2 y=\sin 2 x \\
& \text { IF }=e^{2 d x}=e^{2 x} \\
& y \cdot e^{2 x}=\int e^{2 x} \sin 2 x d x+c \\
& =\frac{e^{2 x}}{8}(2 \sin 2 x-2 \cos 2 x)+c \\
& y(0)=\frac{3}{4} \\
& \frac{3}{4}=\frac{1}{8}(-2)+c \Rightarrow c=1 \\
& \text { Put } x=\frac{\pi}{8} \\
& y=\frac{1}{8} \times 2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)+e^{-\pi / 4} \\
& y=e^{-\pi / 4}
\end{aligned}$$
Comments (0)
