JEE MAIN - Mathematics (2024 - 5th April Morning Shift - No. 9)
The coefficients $$a, b, c$$ in the quadratic equation $$a x^2+b x+c=0$$ are chosen from the set $$\{1,2,3,4,5,6,7,8\}$$. The probability of this equation having repeated roots is :
$$\frac{1}{128}$$
$$\frac{1}{64}$$
$$\frac{3}{256}$$
$$\frac{3}{128}$$
Explanation
Given quadratic equation is
$$a x^2+b x+c=0 \text { where } a, b, c \in\{1,2,3, \ldots, 8\}$$
For repeated roots,
$$\begin{aligned} & b^2-4 a c=0 \\ & \Rightarrow b^2=4 a c \end{aligned}$$
$$\Rightarrow a c$$ must be a perfect square
$$(a, c) \in\{(1,1),(1,4),(2,2),(2,8),(3,3),(4,1),(4,4),(5,5),(6,6),(7,7),(8,2),(8,8)\}$$
Corresponding $$b$$ must lie in set $$\{1,2,3, \ldots 8\}$$
$$\begin{aligned} & (a, b, c) \in\{(1,2,1),(1,2,4),(2,4,2),(2,8,8) \\ & (3,6,3),(4,4,1),(4,8,4),(8,8,2)\} \\ & \therefore \text { probability }=\frac{8}{8^3} \\ & =\frac{1}{64} \\ & \end{aligned}$$
Comments (0)
