JEE MAIN - Mathematics (2025 - 7th April Evening Shift)

1
Let f : ℝ $$ \to $$ ℝ be a polynomial function of degree four having extreme values at x = 4 and x = 5. If $ \lim\limits_{x \to 0} \frac{f(x)}{x^2} = 5 $, then f(2) is equal to :
Answer
(B)
10
2

Let y = y(x) be the solution of the differential equation $(x^2 + 1)y' - 2xy = (x^4 + 2x^2 + 1)\cos x$,

$y(0) = 1$. Then $ \int\limits_{-3}^{3} y(x) \, dx $ is :

Answer
(B)
24
3
If the locus of z ∈ ℂ, such that Re$ \left( \frac{z - 1}{2z + i} \right) + \text{Re} \left( \frac{\overline{z} - 1}{2\overline{z} - i} \right) = 2 $, is a circle of radius r and center $(a, b)$, then $ \frac{15ab}{r^2} $ is equal to :
Answer
(D)
18
4
Let $a_n$ be the $n^{th}$ term of an A.P. If $S_n = a_1 + a_2 + a_3 + \ldots + a_n = 700$, $a_6 = 7$ and $S_7 = 7$, then $a_n$ is equal to :
Answer
(D)
64
5
A bag contains 19 unbiased coins and one coin with head on both sides. One coin drawn at random is tossed and head turns up. If the probability that the drawn coin was unbiased, is $\frac{m}{n}$, $\gcd(m, n) = 1$, then $n^2 - m^2$ is equal to :
Answer
(B)
80
6
If the range of the function $ f(x) = \frac{5-x}{x^2 - 3x + 2} , \ x \neq 1, 2, $ is $ (-\infty , \alpha] \cup [\beta, \infty) $, then $ \alpha^2 + \beta^2 $ is equal to :
Answer
(D)
194
7
The number of real roots of the equation $x |x - 2| + 3|x - 3| + 1 = 0$ is :
Answer
(D)
1
8
Let the length of a latus rectum of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ be 10. If its eccentricity is the minimum value of the function $f(t) = t^2 + t + \frac{11}{12}$, $t \in \mathbb{R}$, then $a^2 + b^2$ is equal to :
Answer
(D)
126
9
Let e1 and e2 be the eccentricities of the ellipse $\frac{x^2}{b^2} + \frac{y^2}{25} = 1$ and the hyperbola $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$, respectively. If b < 5 and e1e2 = 1, then the eccentricity of the ellipse having its axes along the coordinate axes and passing through all four foci (two of the ellipse and two of the hyperbola) is :
Answer
(B)
$\frac{3}{5}$
10
If the equation of the line passing through the point $ \left( 0, -\frac{1}{2}, 0 \right) $ and perpendicular to the lines $ \vec{r} = \lambda \left( \hat{i} + a\hat{j} + b\hat{k} \right) $ and $ \vec{r} = \left( \hat{i} - \hat{j} - 6\hat{k} \right) + \mu \left( -b \hat{i} + a\hat{j} + 5\hat{k} \right) $ is $ \frac{x-1}{-2} = \frac{y+4}{d} = \frac{z-c}{-4} $, then $ a+b+c+d $ is equal to :
Answer
(B)
14
11
If the sum of the second, fourth and sixth terms of a G.P. of positive terms is 21 and the sum of its eighth, tenth and twelfth terms is 15309, then the sum of its first nine terms is :
Answer
(A)
757
12
If the area of the region $ \{(x, y) : 1 + x^2 \leq y \leq \min \{x+7, 11-3x\}\} $ is $ A $, then $ 3A $ is equal to :
Answer
(A)
50
13
The number of solutions of the equation

$ \cos 2\theta \cos \frac{\theta}{2} + \cos \frac{5\theta}{2} = 2\cos^3 \frac{5\theta}{2} $ in $ \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] $ is :
Answer
(B)
7
14
Consider the lines L1: x - 1 = y - 2 = z and L2: x - 2 = y = z - 1. Let the feet of the perpendiculars from the point P(5, 1, -3) on the lines L1 and L2 be Q and R respectively. If the area of the triangle PQR is A, then 4A2 is equal to :
Answer
(B)
147
15
Let A = { ($\alpha, \beta$) $\in \mathbb{R} \times \mathbb{R}$ : |$\alpha$ - 1| $\leq 4$ and |$\beta$ - 5| $\leq 6$ }

and B = { ($\alpha, \beta$) $\in \mathbb{R} \times \mathbb{R}$ : 16($\alpha$ - $2)^2 $+ 9($\beta$ - $6)^2$ $\leq 144$ }.

Then
Answer
(B)
B $\subset$ A
16

Let $ \vec{a} $ and $ \vec{b} $ be the vectors of the same magnitude such that

$ \frac{|\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|}{|\vec{a} + \vec{b}| - |\vec{a} - \vec{b}|} = \sqrt{2} + 1. $ Then $ \frac{|\vec{a} + \vec{b}|^2}{|\vec{a}|^2} $ is :

Answer
(A)
2 + $\sqrt{2}$
17
Let p be the number of all triangles that can be formed by joining the vertices of a regular polygon P of n sides and q be the number of all quadrilaterals that can be formed by joining the vertices of P. If p + q = 126, then the eccentricity of the ellipse $\frac{x^2}{16} + \frac{y^2}{n} = 1$ is :
Answer
(A)
$\frac{1}{\sqrt{2}}$
18
Let a random variable X take values 0, 1, 2, 3 with P(X=0)=P(X=1)=p, P(X=2)=P(X=3) and E(X2)=2E(X). Then the value of 8p−1 is :
Answer
(A)
2
19

Let the system of equations

x + 5y - z = 1

4x + 3y - 3z = 7

24x + y + λz = μ

λ, μ ∈ ℝ, have infinitely many solutions. Then the number of the solutions of this system,

if x, y, z are integers and satisfy 7 ≤ x + y + z ≤ 77, is :

Answer
(C)
3
20
If the orthocenter of the triangle formed by the lines y = x + 1, y = 4x - 8 and y = mx + c is at (3, -1), then m - c is :
Answer
(A)
0
21
The sum of the series $2 \times 1 \times{ }^{20} \mathrm{C}_4-3 \times 2 \times{ }^{20} \mathrm{C}_5+4 \times 3 \times{ }^{20} \mathrm{C}_6-5 \times 4 \times{ }^{20} \mathrm{C}_7+\cdots \cdots+18 \times 17 \times{ }^{20} \mathrm{C}_{20}$, is equal to ____________.
Answer
34
22
If the function $f(x)=\frac{\tan (\tan x)-\sin (\sin x)}{\tan x-\sin x}$ is continuous at $x=0$, then $f(0)$ is equal to ____________.
Answer
2
23
If $\int\left(\frac{1}{x}+\frac{1}{x^3}\right)\left(\sqrt[23]{3 x^{-24}+x^{-26}}\right) \mathrm{d} x=-\frac{\alpha}{3(\alpha+1)}\left(3 x^\beta+x^\gamma\right)^{\frac{\alpha+1}{\alpha}}+C, x>0,(\alpha, \beta, \gamma \in \mathbf{Z})$, where C is the constant of integration, then $\alpha+\beta+\gamma$ is equal to ___________.
Answer
19
24
Let the lengths of the transverse and conjugate axes of a hyperbola in standard form be $2 a$ and $2 b$, respectively, and one focus and the corresponding directrix of this hyperbola be $(-5,0)$ and $5 x+9=0$, respectively. If the product of the focal distances of a point $(\alpha, 2 \sqrt{5})$ on the hyperbola is $p$, then $4 p$ is equal to ___________.
Answer
189
25

For $\mathrm{t}>-1$, let $\alpha_{\mathrm{t}}$ and $\beta_{\mathrm{t}}$ be the roots of the equation

$$ \left((\mathrm{t}+2)^{1 / 7}-1\right) x^2+\left((\mathrm{t}+2)^{1 / 6}-1\right) x+\left((\mathrm{t}+2)^{1 / 21}-1\right)=0 \text {. If } \lim \limits_{\mathrm{t} \rightarrow-1^{+}} \alpha_{\mathrm{t}}=\mathrm{a} \text { and } \lim \limits_{\mathrm{t} \rightarrow-1^{+}} \beta_{\mathrm{t}}=\mathrm{b} \text {, } $$

then $72(a+b)^2$ is equal to ___________.

Answer
98