JEE MAIN - Mathematics (2025 - 7th April Evening Shift - No. 16)
Let $ \vec{a} $ and $ \vec{b} $ be the vectors of the same magnitude such that
$ \frac{|\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|}{|\vec{a} + \vec{b}| - |\vec{a} - \vec{b}|} = \sqrt{2} + 1. $ Then $ \frac{|\vec{a} + \vec{b}|^2}{|\vec{a}|^2} $ is :
Explanation
$$\frac{|\bar{a}+\bar{b}|+|\bar{a}-\bar{b}|}{|\bar{a}+\bar{b}|-|\bar{a}-\bar{b}|}=\sqrt{2}+1$$
Apply componendo and dividendo
$$\begin{aligned} & \Rightarrow \frac{2|\bar{a}+\bar{b}|}{2|\bar{a}-\bar{b}|}=\frac{\sqrt{2}+2}{\sqrt{2}} \\ & \Rightarrow|\overline{\mathrm{a}}+\overline{\mathrm{b}}|=(1+\sqrt{2})|\overline{\mathrm{a}}-\overline{\mathrm{b}}| \\ & \Rightarrow|\overline{\mathrm{a}}+\overline{\mathrm{b}}|^2=(3+2 \sqrt{2})|\overline{\mathrm{a}}-\overline{\mathrm{b}}|^2 \\ & \Rightarrow 2|\overline{\mathrm{a}}|^2+2 \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=(3+2 \sqrt{2})\left(2|\overline{\mathrm{a}}|^2-2 \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}\right) \\ & \Rightarrow 2|\overline{\mathrm{a}}|^2(2+2 \sqrt{2})=2 \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}(4+2 \sqrt{2}) \\ & \Rightarrow \frac{\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}}{|\overline{\mathrm{a}}|^2}=\frac{2+2 \sqrt{2}}{4+2 \sqrt{2}}=\frac{1}{\sqrt{2}} \end{aligned}$$
Now
$$\begin{aligned} & \frac{|\overline{\mathrm{a}}+\overline{\mathrm{b}}|^2}{|\overline{\mathrm{a}}|^2}=1+\frac{|\overline{\mathrm{b}}|^2}{|\overline{\mathrm{a}}|^2}+\frac{2 \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}}{|\overline{\mathrm{a}}|^2} \\ & =1+1+2\left(\frac{1}{\sqrt{2}}\right)=2+\sqrt{2} \end{aligned}$$
Comments (0)
