JEE MAIN - Mathematics (2025 - 7th April Evening Shift - No. 3)

If the locus of z ∈ ℂ, such that Re$ \left( \frac{z - 1}{2z + i} \right) + \text{Re} \left( \frac{\overline{z} - 1}{2\overline{z} - i} \right) = 2 $, is a circle of radius r and center $(a, b)$, then $ \frac{15ab}{r^2} $ is equal to :
16
24
12
18

Explanation

$\operatorname{Re}\left(\frac{\mathrm{z}-1}{2 \mathrm{z}+\mathrm{i}}\right)+\operatorname{Re}\left(\frac{\overline{\mathrm{z}}-1}{2 \bar{z}-\mathrm{i}}\right)=2$

Here, $\frac{\mathrm{z}-1}{2 \mathrm{z}+\mathrm{i}}=\left(\frac{\overline{\bar{z}-1}}{2 \overline{\mathrm{z}}-\mathrm{i}}\right)=2$

$=\operatorname{Re}\left(\frac{z-1}{2 z+i}\right)+\operatorname{Re}\left(\overline{\frac{z-1}{2 z+i}}\right)=2$

$=2 \operatorname{Re}\left(\frac{z-1}{2 z+1}\right)=2 \Rightarrow \operatorname{Re}\left(\frac{z-1}{2 z+i}\right)=1$

$$\begin{aligned} & \text { Let } z=x+i y \\ & \operatorname{Re}\left(\frac{(x-1)+i y}{2 x+i(2 y+1)}\right)=1 \Rightarrow \operatorname{Re}\left[\frac{((x-1)+i y)(2 x-i(y+1)}{(2 x+i(2 y+1)(2 x-i(2 y+1))}\right]=1 \\ & \Rightarrow \frac{2 x(x-1)+y(2 y+1)}{4 x^2+(2 y+1)^2}=1 \\ & \Rightarrow 2 x^2-2 x+2 y^2+y=4 x^2+4 y^2+1+4 y \\ & \Rightarrow 2 x^2+2 y^2+3 y+2 x+1=0 \\ & \Rightarrow x^2+y^2+x+\frac{3}{2} y+\frac{1}{2}=0 \\ & \text { centre }=\left(\frac{-1}{2}, \frac{-3}{4}\right), r=\sqrt{\frac{1}{4}+\frac{9}{16}-\frac{1}{2}}=\frac{\sqrt{5}}{4} \\ & a=\frac{-1}{2}, b=\frac{-3}{4}, r^2=\frac{5}{16} \end{aligned}$$

$15 \frac{\mathrm{ab}}{\mathrm{r}^2}=15 \times\left(\frac{-1}{2}\right) \times\left(\frac{-3}{4}\right) \times \frac{16}{5}=18$

Comments (0)

Advertisement