JEE MAIN - Mathematics (2025 - 7th April Evening Shift - No. 18)

Let a random variable X take values 0, 1, 2, 3 with P(X=0)=P(X=1)=p, P(X=2)=P(X=3) and E(X2)=2E(X). Then the value of 8p−1 is :
2
0
3
1

Explanation

$$\begin{aligned} & 2 p+2 q=\frac{1}{2} \\ & p+q \\ & E\left(x^2\right)=\sum_{i=0}^3 x_i^2 p\left(x_i\right)=0 \cdot p+1 . p+4 \cdot q+9 q \\ & =p+13 q \\ & E(x)=\sum_{i=0}^3 x_i^2 p\left(x_i\right)=0 . p+1 . p+2 q+3 q=p+5 q \\ & p+13 q=2(p+5 q) \\ & p=3 q \\ & \text { So, } q=\frac{1}{8} \& p=\frac{3}{8} \\ & \text { So, } 8 p-1=2\quad\text{Option (2)} \end{aligned}$$

Comments (0)

Advertisement