JEE MAIN - Mathematics (2025 - 7th April Evening Shift - No. 24)
Explanation
Given:
Transverse axis length: $2a$
Conjugate axis length: $2b$
One focus at $(-5, 0)$
Directrix given by $5x + 9 = 0$
The equations used are as follows:
Relationship between focus and directrix:
The focal length $ae = 5$
The directrix gives $\frac{a}{e} = \frac{9}{5}$
Solving these equations, we get:
$ ae = 5, \quad \frac{a}{e} = \frac{9}{5} $
From $ae = 5$, we have $a = \frac{5}{e}$.
Substituting $a = 3$ and $e = \frac{5}{3}$.
Finding $ b $:
Use the relationship $b^2 = a^2(e^2 - 1)$:
$ \text{Given } a = 3 \quad \text{and } e = \frac{5}{3}, \quad b = 4 $
Equation of the hyperbola:
The standard equation, after substituting values of $a$ and $b$, is:
$ \frac{x^2}{9} - \frac{y^2}{16} = 1 $
Focal distances product calculation:
For any point $(\alpha, 2\sqrt{5})$ that lies on the hyperbola:
$ \frac{\alpha^2}{9} - \frac{(2\sqrt{5})^2}{16} = 1 $
Solving this gives:
$ \alpha^2 = 9 \times \frac{36}{16} $
Product of focal distances $ \mathrm{PF}_1 \cdot \mathrm{PF}_2 $:
$ \mathrm{PF}_1 \cdot \mathrm{PF}_2 = (e\alpha - a)(e\alpha + a) = e^2\alpha^2 - a^2 $
Substituting the values:
$ P = e^2\alpha^2 - a^2 = \frac{25}{9} \cdot 9 \cdot \frac{9}{4} - 9 = \frac{189}{4} $
Finally, to find $4p$:
$ 4p = 4 \times \frac{189}{4} = 189 $
Comments (0)
