JEE MAIN - Mathematics (2025 - 7th April Evening Shift - No. 9)
Explanation
Let's find the eccentricities of the given ellipse and hyperbola, and then determine the eccentricity of an ellipse that passes through all four foci.
Step 1: Find $ e_1 $ for the Ellipse
The equation of the ellipse is:
$ \frac{x^2}{b^2} + \frac{y^2}{25} = 1 $
The eccentricity $ e_1 $ is given by:
$ e_1^2 = 1 - \frac{b^2}{25} $
Step 2: Find $ e_2 $ for the Hyperbola
The equation of the hyperbola is:
$ \frac{x^2}{16} - \frac{y^2}{b^2} = 1 $
The eccentricity $ e_2 $ is given by:
$ e_2^2 = 1 + \frac{b^2}{16} $
Step 3: Using the Product $ e_1 e_2 = 1 $
Given:
$ e_1 e_2 = 1 $
Thus:
$ \left(1 - \frac{b^2}{25}\right)\left(1 + \frac{b^2}{16}\right) = 1 $
Expanding gives:
$ 1 + \frac{b^2}{16} - \frac{b^2}{25} - \frac{b^4}{400} = 1 $
Simplifying:
$ \frac{9b^2}{400} = \frac{b^4}{400} $
Thus:
$ b^2 = 9 $
Step 4: Determine Eccentricities $ e_1 $ and $ e_2 $
Substitute $ b^2 = 9 $:
For the ellipse:
$ e_1^2 = 1 - \frac{9}{25} = \frac{16}{25} $
$ e_1 = \frac{4}{5} $
For the hyperbola:
$ e_2 = \frac{5}{4} $
Step 5: Find the Eccentricity of the New Ellipse
The new ellipse's equation is:
$ \frac{x^2}{25} + \frac{y^2}{16} = 1 $
The eccentricity $ e $ is:
$ e = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} $
Thus, the eccentricity of the ellipse that passes through all four foci is $ \frac{3}{5} $.
Comments (0)
