JEE MAIN - Mathematics (2025 - 7th April Evening Shift - No. 17)
Let p be the number of all triangles that can be formed by joining the vertices of a regular polygon P of n sides and q be the number of all quadrilaterals that can be formed by joining the vertices of P. If p + q = 126, then the eccentricity of the ellipse $\frac{x^2}{16} + \frac{y^2}{n} = 1$ is :
$\frac{1}{\sqrt{2}}$
$\frac{1}{2}$
$\frac{\sqrt{7}}{4}$
$\frac{3}{4}$
Explanation
$$\begin{aligned}
& \text { Total trangles }=\Rightarrow={ }^{\mathrm{h}} \mathrm{C}_3 \\
& \text { Total auadrilaterals }={ }^{\mathrm{h}} \mathrm{C}_4=\mathrm{q} \\
& { }^{\mathrm{n}} \mathrm{C}_3+{ }^{\mathrm{n}} \mathrm{C}_4=126 \Rightarrow{ }^{\mathrm{n}+1} \mathrm{C}_4=126 \\
& \Rightarrow \mathrm{n}+1=9 \Rightarrow \mathrm{n}=8 \\
& \frac{\mathrm{x}^2}{16}+\frac{\mathrm{y}^2}{\mathrm{n}}=1 \Rightarrow \frac{\mathrm{x}^2}{16}+\frac{\mathrm{y}^2}{8}=1 \\
& \mathrm{e}=\sqrt{1-\frac{8}{16}}=\sqrt{\frac{8}{16}}=\frac{1}{\sqrt{2}}
\end{aligned}$$
Comments (0)
