Let $S=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x \geq 0, y \geq 0, y^2 \leq 4 x, y^2 \leq 12-2 x\right.$ and $\left.3 y+\sqrt{8} x \leq 5 \sqrt{8}\right\}$. If the area of the region $S$ is $\alpha \sqrt{2}$, then $\alpha$ is equal to
Answer
(B)
$\frac{17}{3}$
3
Let $k \in \mathbb{R}$. If $\lim \limits_{x \rightarrow 0+}(\sin (\sin k x)+\cos x+x)^{\frac{2}{x}}=e^6$, then the value of $k$ is
Answer
(B)
2
4
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by
$$ f(x)=\left\{\begin{array}{cc} x^2 \sin \left(\frac{\pi}{x^2}\right), & \text { if } x \neq 0, \\ 0, & \text { if } x=0 . \end{array}\right. $$
Then which of the following statements is TRUE?
Answer
(D)
$f(x)=0$ has more than 25 solutions in the interval $\left(\frac{1}{\pi^2}, \frac{1}{\pi}\right)$.
5
Let $S$ be the set of all $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}$ such that
A straight line drawn from the point $P(1,3,2)$, parallel to the line $\frac{x-2}{1}=\frac{y-4}{2}=\frac{z-6}{1}$, intersects the plane $L_1: x-y+3 z=6$ at the point $Q$. Another straight line which passes through $Q$ and is perpendicular to the plane $L_1$ intersects the plane $L_2: 2 x-y+z=-4$ at the point $R$. Then which of the following statements is (are) TRUE?
Answer
A
C
7
Let $A_1, B_1, C_1$ be three points in the $x y$-plane. Suppose that the lines $A_1 C_1$ and $B_1 C_1$ are tangents to the curve $y^2=8 x$ at $A_1$ and $B_1$, respectively. If $O=(0,0)$ and $C_1=(-4,0)$, then which of the following statements is (are) TRUE?
Answer
A
C
8
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$, and $g: \mathbb{R} \rightarrow(0, \infty)$ be a function such that $g(x+y)=g(x) g(y)$ for all $x, y \in \mathbb{R}$. If $f\left(\frac{-3}{5}\right)=12$ and $g\left(\frac{-1}{3}\right)=2$, then the value of $\left(f\left(\frac{1}{4}\right)+g(-2)-8\right) g(0)$ is _________.
Answer
51
9
A bag contains $N$ balls out of which 3 balls are white, 6 balls are green, and the remaining balls are blue. Assume that the balls are identical otherwise. Three balls are drawn randomly one after the other without replacement. For $i=1,2,3$, let $W_i, G_i$, and $B_i$ denote the events that the ball drawn in the $i^{\text {th }}$ draw is a white ball, green ball, and blue ball, respectively. If the probability $P\left(W_1 \cap G_2 \cap B_3\right)=\frac{2}{5 N}$ and the conditional probability $P\left(B_3 \mid W_1 \cap G_2\right)=\frac{2}{9}$, then $N$ equals ________.
Answer
11
10
Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by
A normal with slope $\frac{1}{\sqrt{6}}$ is drawn from the point $(0,-\alpha)$ to the parabola $x^2=-4 a y$, where $a>0$. Let $L$ be the line passing through $(0,-\alpha)$ and parallel to the directrix of the parabola. Suppose that $L$ intersects the parabola at two points $A$ and $B$. Let $r$ denote the length of the latus rectum and $s$ denote the square of the length of the line segment $A B$. If $r: s=1: 16$, then the value of $24 a$ is _______.
Answer
12
13
Let the function $f:[1, \infty) \rightarrow \mathbb{R}$ be defined by
$$ f(t)=\left\{\begin{array}{cc} (-1)^{n+1} 2, & \text { if } t=2 n-1, n \in \mathbb{N}, \\ \frac{(2 n+1-t)}{2} f(2 n-1)+\frac{(t-(2 n-1))}{2} f(2 n+1), & \text { if } 2 n-1 < t < 2 n+1, n \in \mathbb{N} . \end{array}\right. $$
Define $g(x)=\int_1^x f(t) d t, x \in(1, \infty)$. Let $\alpha$ denote the number of solutions of the equation $g(x)=0$ in the interval $(1,8]$ and $\beta=\lim \limits_{x \rightarrow l+} \frac{g(x)}{x-1}$.
Then the value of $\alpha+\beta$ is equal to _______.
Answer
5
14
If $n(X)={ }^m C_6$, then the value of $m$ is _____
Answer
20
15
If the value of $n(Y)+n(Z)$ is $k^2$, then $|k|$ is _________.
Answer
36
16
The value of $2 \int\limits_0^{\frac{\pi}{2}} f(x) g(x) d x-\int\limits_0^{\frac{\pi}{2}} g(x) d x$ is ____________.
Answer
0
17
The value of $\frac{16}{\pi^3} \int\limits_0^{\frac{\pi}{2}} f(x) g(x) d x$ is ______.