JEE Advance - Mathematics (2024 - Paper 2 Online - No. 15)
Explanation
given $$|a-b| \geq 2$$ so if
i.e. Total elements in X is $${ }^{20} \mathrm{C}_6$$
Now for $$\mathrm{n}(\mathrm{Y})$$, range of R has exactly one element i.e. second elements must be constant in R and since R must have 6 element so it is not possible to satisfy both condition so $$\mathrm{n}(\mathrm{Y})=0$$.
$$\begin{aligned} \text { for } \quad \mathrm{n}(\mathrm{z}) \quad & 1 \rightarrow 3,4,5,6 \\ & 2 \rightarrow 4,5,6 \\ & 3 \rightarrow 1,5,6 \\ & 4 \rightarrow 1,2,6 \\ & 5 \rightarrow 1,2,3 \\ & 6 \rightarrow 1,2,3,4 \end{aligned}$$
no. of relation that are function will be
$$\begin{aligned} & ={ }^4 \mathrm{C}_1 \times{ }^3 \mathrm{C}_1 \times{ }^3 \mathrm{C}_1 \times{ }^3 \mathrm{C}_1 \times{ }^3 \mathrm{C}_1 \times{ }^4 \mathrm{C}_1 \\ & =(4 \times 3 \times 3)^2=\mathrm{k}^2 \\ & \text { i.e. } \mathrm{k}=36 \end{aligned}$$
Comments (0)
