JEE Advance - Mathematics (2024 - Paper 2 Online - No. 16)
The value of $2 \int\limits_0^{\frac{\pi}{2}} f(x) g(x) d x-\int\limits_0^{\frac{\pi}{2}} g(x) d x$ is ____________.
Answer
0
Explanation
$$\mathrm{I}=2 \int_\limits0^{\frac{\pi}{2}} \underbrace{\sin ^2 \mathrm{x} \cdot \sqrt{\frac{\pi x}{2}-\mathrm{x}^2}}_{\mathrm{i}_1}-\int_\limits0^{\frac{\pi}{2}} \mathrm{~g}(\mathrm{x}) \mathrm{dx}$$
$$\text { Let } I_1=\int_\limits0^{\frac{\pi}{2}} \sin ^2 x \sqrt{\left(\frac{\pi}{4}\right)^2-\left(x-\frac{\pi}{4}\right)^2} \quad \text { (making perfect square) }$$
apply kings
$$I_1=\int_\limits0^{\frac{\pi}{2}} \cos ^2 x \sqrt{\left(\frac{\pi}{4}\right)^2-\left(\frac{\pi}{2}-x\right)^2}$$
add both
$$2 I_1=\int_\limits0^{\frac{\pi}{2}} \sqrt{\left(\frac{\pi}{4}\right)^2-\left(x-\frac{\pi}{4}\right)^2}$$
i.e. $$2 I_1=\int_\limits0^{\frac{\pi}{2}} g(x)$$
Now $$I=2 I_1-\int_\limits0^{\frac{\pi}{2}} g(x)=0$$
Comments (0)
