Consider a triangle $$\Delta$$ whose two sides lie on the x-axis and the line x + y + 1 = 0. If the orthocenter of $$\Delta$$ is (1, 1), then the equation of the circle passing through the vertices of the triangle $$\Delta$$ is
Answer
(B)
x2 + y2 + x + 3y = 0
2
The area of the region
$$\left\{ {\matrix{
{(x,y):0 \le x \le {9 \over 4},} & {0 \le y \le 1,} & {x \ge 3y,} & {x + y \ge 2} \cr
} } \right\}$$ is
Answer
(A)
$${{11} \over {32}}$$
3
Consider three sets E1 = {1, 2, 3}, F1 = {1, 3, 4} and G1 = {2, 3, 4, 5}. Two elements are chosen at random, without replacement, from the set E1, and let S1 denote the set of these chosen elements. Let E2 = E1 $$-$$ S1 and F2 = F1 $$\cup$$ S1. Now two elements are chosen at random, without replacement, from the set F2 and let S2 denote the set of these chosen elements.
Let G2 = G1 $$\cup$$ S2. Finally, two elements are chosen at random, without replacement, from the set G2 and let S3 denote the set of these chosen elements.
Let E3 = E2 $$\cup$$ S3. Given that E1 = E3, let p be the conditional probability of the event S1 = {1, 2}. Then the value of p is
Answer
(A)
$${1 \over 5}$$
4
Let $\theta_1, \theta_2, \ldots, \theta_{10}$ be positive valued angles (in radian) such that $\theta_1+\theta_2+\cdots+\theta_{10}=2 \pi$. Define the complex numbers $z_1=e^{i \theta_1}, z_k=z_{k-1} e^{i \theta_k}$ for $k=2,3, \ldots, 10$, where $i=\sqrt{-1}$. Consider the statements $P$ and $Q$ given below:
Three numbers are chosen at random, one after another with replacement, from the set S = {1, 2, 3, ......, 100}. Let p1 be the probability that the maximum of chosen numbers is at least 81 and p2 be the probability that the minimum of chosen numbers is at most 40.
The value of $${{625} \over 4}{p_1}$$ is ___________.
Answer
76.25
6
Three numbers are chosen at random, one after another with replacement, from the set S = {1, 2, 3, ......, 100}. Let p1 be the probability that the maximum of chosen numbers is at least 81 and p2 be the probability that the minimum of chosen numbers is at most 40.
The value of $${{125} \over 4}{p_2}$$ is ___________.
Answer
24.5
7
Let $$\alpha$$, $$\beta$$ and $$\gamma$$ be real numbers such that the system of linear equations
x + 2y + 3z = $$\alpha$$
4x + 5y + 6z = $$\beta$$
7x + 8y + 9z = $$\gamma $$ $$-$$ 1
is consistent. Let | M | represent the determinant of the matrix
Let P be the plane containing all those ($$\alpha$$, $$\beta$$, $$\gamma$$) for which the above system of linear equations is consistent, and D be the square of the distance of the point (0, 1, 0) from the plane P.
The value of | M | is _________.
Answer
1
8
Let $$\alpha$$, $$\beta$$ and $$\gamma$$ be real numbers such that the system of linear equations
x + 2y + 3z = $$\alpha$$
4x + 5y + 6z = $$\beta$$
7x + 8y + 9z = $$\gamma $$ $$-$$ 1
is consistent. Let | M | represent the determinant of the matrix
Let P be the plane containing all those ($$\alpha$$, $$\beta$$, $$\gamma$$) for which the above system of linear equations is consistent, and D be the square of the distance of the point (0, 1, 0) from the plane P.
The value of D is _________.
Answer
1.5
9
Consider the lines L1 and L2 defined by
$${L_1}:x\sqrt 2 + y - 1 = 0$$ and $${L_2}:x\sqrt 2 - y + 1 = 0$$
For a fixed constant $$\lambda$$, let C be the locus of a point P such that the product of the distance of P from L1 and the distance of P from L2 is $$\lambda$$2. The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $$\sqrt {270} $$. Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'.
The value of $$\lambda$$2 is __________.
Answer
9
10
Consider the lines L1 and L2 defined by
$${L_1}:x\sqrt 2 + y - 1 = 0$$ and $${L_2}:x\sqrt 2 - y + 1 = 0$$
For a fixed constant $$\lambda$$, let C be the locus of a point P such that the product of the distance of P from L1 and the distance of P from L2 is $$\lambda$$2. The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $$\sqrt {270} $$. Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'.
The value of D is __________.
Answer
77.14
11
For any 3 $$\times$$ 3 matrix M, let | M | denote the determinant of M. Let
If Q is a nonsingular matrix of order 3 $$\times$$ 3, then which of the following statements is(are) TRUE?
Answer
A
B
D
12
Let f : R $$\to$$ R be defined by $$f(x) = {{{x^2} - 3x - 6} \over {{x^2} + 2x + 4}}$$
Then which of the following statements is (are) TRUE?
Answer
A
B
13
Let E, F and G be three events having probabilities $$P(E) = {1 \over 8}$$, $$P(F) = {1 \over 6}$$ and $$P(G) = {1 \over 4}$$, and let P (E $$\cap$$ F $$\cap$$ G) = $${1 \over {10}}$$. For any event H, if Hc denotes the complement, then which of the following statements is (are) TRUE?
Answer
A
B
C
14
For any 3 $$\times$$ 3 matrix M, let |M| denote the determinant of M. Let I be the 3 $$\times$$ 3 identity matrix. Let E and F be two 3 $$\times$$ 3 matrices such that (I $$-$$ EF) is invertible. If G = (I $$-$$ EF)$$-$$1, then which of the following statements is (are) TRUE?
Answer
A
B
C
15
For any positive integer n, let Sn : (0, $$\infty$$) $$\to$$ R be defined by $${S_n}(x) = \sum\nolimits_{k = 1}^n {{{\cot }^{ - 1}}\left( {{{1 + k(k + 1){x^2}} \over x}} \right)} $$, where for any x $$\in$$ R, $${\cot ^{ - 1}}(x) \in (0,\pi )$$ and $${\tan ^{ - 1}}(x) \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$. Then which of the following statements is (are) TRUE?
Answer
A
B
16
For any complex number w = c + id, let $$\arg (w) \in ( - \pi ,\pi ]$$, where $$i = \sqrt { - 1} $$. Let $$\alpha$$ and $$\beta$$ be real numbers such that for all complex numbers z = x + iy satisfying $$\arg \left( {{{z + \alpha } \over {z + \beta }}} \right) = {\pi \over 4}$$, the ordered pair (x, y) lies on the circle $${x^2} + {y^2} + 5x - 3y + 4 = 0$$, Then which of the following statements is (are) TRUE?
Answer
B
D
17
For x $$\in$$ R, the number of real roots of the equation $$3{x^2} - 4\left| {{x^2} - 1} \right| + x - 1 = 0$$ is ________.
Answer
4
18
In a triangle ABC, let AB = $$\sqrt {23} $$, BC = 3 and CA = 4. Then the value of $${{\cot A + \cot C} \over {\cot B}}$$ is _________.
Answer
2
19
Let $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$ be vectors in three-dimensional space, where $$\overrightarrow u $$ and $$\overrightarrow v $$ are unit vectors which are not perpendicular to each other and $$\overrightarrow u $$ . $$\overrightarrow w $$ = 1, $$\overrightarrow v $$ . $$\overrightarrow w $$ = 1, $$\overrightarrow w $$ . $$\overrightarrow w $$ = 4
If the volume of the paralleopiped, whose adjacent sides are represented by the vectors, $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$, is $$\sqrt 2 $$, then the value of $$\left| {3\overrightarrow u + 5\overrightarrow v } \right|$$ is ___________.