JEE Advance - Mathematics (2021 - Paper 1 Online - No. 18)

In a triangle ABC, let AB = $$\sqrt {23} $$, BC = 3 and CA = 4. Then the value of $${{\cot A + \cot C} \over {\cot B}}$$ is _________.
Answer
2

Explanation

Given,

$$AB = \sqrt {23} = c$$

$$BC = 3 = a$$

$$CA = 4 = b$$

JEE Advanced 2021 Paper 1 Online Mathematics - Properties of Triangle Question 3 English Explanation
Now,

$${{\cot A + \cot C} \over {\cot B}} = {{{{\cos A} \over {\sin A}} + {{\cos C} \over {\sin C}}} \over {{{\cos B} \over {\sin B}}}}$$

$$ = {{{{{b^2} + {c^2} - {a^2}} \over {2bc(\sin A)}} + {{{a^2} + {b^2} - {c^2}} \over {2ab(\sin C)}}} \over {{{{c^2} + {a^2} - {b^2}} \over {2ac(\sin B)}}}}$$

$$ = {{{{{b^2} + {c^2} - {a^2}} \over {4\Delta }} + {{{a^2} + {b^2} - {c^2}} \over {4\Delta }}} \over {{{{c^2} + {a^2} - {b^2}} \over {4\Delta }}}}$$

$$ = {{{b^2} + {c^2} - {a^2} + {a^2} + {b^2} - {c^2}} \over {{c^2} + {a^2} - {b^2}}}$$

$$ = {{2{b^2}} \over {{a^2} + {c^2} - {b^2}}} = {{2 \times 16} \over {9 + 23 - 16}} = {{32} \over {16}} = 2$$

Comments (0)

Advertisement