JEE Advance - Mathematics (2021 - Paper 1 Online - No. 11)

For any 3 $$\times$$ 3 matrix M, let | M | denote the determinant of M. Let

$$E = \left[ {\matrix{ 1 & 2 & 3 \cr 2 & 3 & 4 \cr 8 & {13} & {18} \cr } } \right]$$, $$P = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right]$$ and $$F = \left[ {\matrix{ 1 & 3 & 2 \cr 8 & {18} & {13} \cr 2 & 4 & 3 \cr } } \right]$$

If Q is a nonsingular matrix of order 3 $$\times$$ 3, then which of the following statements is(are) TRUE?
F = PEP and $${P^2} = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
| EQ + PFQ$$-$$1 | = | EQ | + | PFQ$$-$$1 |
| (EF)3 | > | EF |2
Sum of the diagonal entries of P$$-$$1EP + F is equal to the sum of diagonal entries of E + P$$-$$1FP

Explanation

For option (a)

$$PEP = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right]\left[ {\matrix{ 1 & 2 & 3 \cr 2 & 3 & 4 \cr 8 & {13} & {18} \cr } } \right]\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right]$$

$$ = \left[ {\matrix{ 1 & 2 & 3 \cr 8 & {13} & {18} \cr 2 & 3 & 4 \cr } } \right]\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right] = \left[ {\matrix{ 1 & 3 & 2 \cr 8 & {18} & {13} \cr 2 & 4 & 3 \cr } } \right] = F$$

and $${P^2} = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right]\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right] = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$

Hence, option (a) is correct.

For option (b)

$$\left| {EQ + PF{Q^{ - 1}}} \right| = \left| {EQ} \right| + \left| {PF{Q^{ - 1}}} \right|$$ .... (i)

$$\because$$ | E | = 0 and | F | = 0 and | Q | $$\ne$$ 0

$$\therefore$$ $$\left| {EQ} \right| = \left| E \right|\left| Q \right| = 0$$

and $$\left| {PF{Q^{ - 1}}} \right| = {{\left| P \right|\left| F \right|} \over {\left| Q \right|}} = 0$$

Let $$R = EQ + PF{Q^{ - 1}}$$ .... (ii)

$$ \Rightarrow RQ = E{Q^2} + PF = E{Q^2} + {P^2}EP = E{Q^2} + EP$$ [$$\because$$ P2 = I]

$$ = E({Q^2} + P)$$

$$ \Rightarrow \left| {RQ} \right| = \left| {E({Q^2} + P)} \right|$$

$$ \Rightarrow \left| R \right|\left| Q \right| = \left| E \right|\left| {{Q^2} + P} \right| = 0$$ [$$\because$$ | E | = O]

$$ \Rightarrow \left| R \right| = 0$$ (as $$\left| Q \right| \ne 0$$) ..... (iii)

From Eqs. (ii) and (iii), we get Eq. (i) is true.

Hence, option (b) is correct.

For option (c)

$$\left| {{{(EF)}^3}} \right| > {\left| {EF} \right|^2}$$

i.e. 0 > 0 which is false.

For option (d)

$$\because$$ $${P^2} = I \Rightarrow {P^{ - 1}} = P$$

$$\therefore$$ $${P^{ - 1}}FP = PFP = PPEPP = E$$

So, $$E + {P^{ - 1}}FP = E + E = 2E$$

$$ \Rightarrow Tr(E + {P^{ - 1}}FP) = Tr(2E) = 2Tr(E)$$ ..... (iv)

and $${P^{ - 1}}EP + F$$

$$ \Rightarrow PEP + F = 2PEP$$ [$$\because$$ F = PEP]

$$\therefore$$ $$Tr(2PEP) = 2Tr(PEP) = 2Tr(F) = 2Tr(E)$$ ..... (v)

From Eqs. (iv) and (v) option (d) is also correct.

Comments (0)

Advertisement