Let $$P$$ be the point on the parabola $${y^2} = 4x$$ which is at the shortest distance from the center $$S$$ of the circle $${x^2} + {y^2} - 4x - 16y + 64 = 0$$. Let $$Q$$ be the point on the circle dividing the line segment $$SP$$ internally. Then
Answer
A
C
D
4
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.
If the tangents to the ellipse at $$M$$ and $$N$$ meet at $$R$$ and the normal to the parabola at $$M$$ meets the $$x$$-axis at $$Q$$, then the ratio of area of the triangle $$MQR$$ to area of the quadrilateral $$M{F_1}N{F_2}$$is
Answer
(C)
$$5:8$$
5
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.
The orthocentre of the triangle $${F_1}MN$$ is
Answer
(A)
$$\left( { - {9 \over {10}},0} \right)$$
6
Let f: R $$ \to \left( {0,\infty } \right)$$ and g : R $$ \to $$ R be twice differentiable functions such that f'' and g'' are continuous functions on R. Suppose f'$$(2)$$ $$=$$ g$$(2)=0$$, f''$$(2)$$$$ \ne 0$$ and g'$$(2)$$ $$ \ne 0$$. If
$$\mathop {\lim }\limits_{x \to 2} {{f\left( x \right)g\left( x \right)} \over {f'\left( x \right)g'\left( x \right)}} = 1,$$ then
Answer
A
D
7
The value of $$\int\limits_{-{\pi \over 2}}^{{\pi \over 2}} {{{{x^2}\cos x} \over {1 + {e^x}}}dx} $$ is equal to
Let $$P$$ be the image of the point $$(3,1,7)$$ with respect to the plane $$x-y+z=3.$$ Then the equation of the plane passing through $$P$$ and containing the straight line $${x \over 1} = {y \over 2} = {z \over 1}$$ is
Answer
(C)
$$x-4y+7z=0$$
12
Let $$\widehat u = {u_1} \widehat i + {u_2}\widehat j + {u_3}\widehat k$$ be a unit vector in $${{R^3}}$$ and $$\widehat w = {1 \over {\sqrt 6 }}\left( {\widehat i + \widehat j + 2\widehat k} \right).$$ Given that there exists a vector $${\overrightarrow v }$$ in $${{R^3}}$$ such that $$\left| {\widehat u \times \overrightarrow v } \right| = 1$$ and $$\widehat w.\left( {\widehat u \times \overrightarrow v } \right) = 1.$$ Which of the following statement(s) is (are) correct?
Let $$P = \left[ {\matrix{
1 & 0 & 0 \cr
4 & 1 & 0 \cr
{16} & 4 & 1 \cr
} } \right]$$ and I be the identity matrix of order 3. If $$Q = [{q_{ij}}]$$ is a matrix such that $${P^{50}} - Q = I$$ and $${{{q_{31}} + {q_{32}}} \over {{q_{21}}}}$$ equals
Answer
(B)
103
15
Let bi > 1 for I = 1, 2, ......, 101. Suppose logeb1, logeb2, ......., logeb101 are in Arithmetic Progression (A.P.) with the common difference loge2. Suppose a1, a2, ......, a101 are in A.P. such that a1 = b1 and a51 = b51. If t = b1 + b2 + .... + b51 and s = a1 + a2 + ..... + a51, then
Answer
(B)
s > t and a101 < b101
16
Let a, b $$\in$$ R and f : R $$\to$$ R be defined by $$f(x) = a\cos (|{x^3} - x|) + b|x|\sin (|{x^3} + x|)$$. Then f is
Answer
A
B
17
Let a, $$\lambda$$, m $$\in$$ R. Consider the system of linear equations
ax + 2y = $$\lambda$$
3x $$-$$ 2y = $$\mu$$
Which of the following statements is(are) correct?
Answer
B
C
D
18
Let $$f:\left[ { - {1 \over 2},2} \right] \to R$$ and $$g:\left[ { - {1 \over 2},2} \right] \to R$$ be function defined by $$f(x) = [{x^2} - 3]$$ and $$g(x) = |x|f(x) + |4x - 7|f(x)$$, where [y] denotes the greatest integer less than or equal to y for $$y \in R$$. Then