JEE Advance - Mathematics (2016 - Paper 2 Offline - No. 13)
$$f\left( x \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {{{{n^n}\left( {x + n} \right)\left( {x + {n \over 2}} \right)...\left( {x + {n \over n}} \right)} \over {n!\left( {{x^2} + {n^2}} \right)\left( {{x^2} + {{{n^2}} \over 4}} \right)....\left( {{x^2} + {{{n^2}} \over {{n^2}}}} \right)}}} \right)^{{x \over n}}},$$ for
all $$x>0.$$ Then
Explanation
$$f(x) = \mathop {\lim }\limits_{n \to \infty } {\left\{ {{{{n^{2n}}\left( {{x \over n} + 1} \right)\left( {{x \over n} + {1 \over 2}} \right)...\left( {{x \over n} + {1 \over n}} \right)} \over {n!{n^{2n}}\left( {{{{x^2}} \over {{n^2}}} + 1} \right)\left( {{{{x^2}} \over {{n^2}}} + {1 \over {{2^2}}}} \right)....\left( {{{{x^2}} \over {{n^2}}} + {1 \over {{n^2}}}} \right)}}} \right\}^{{x \over n}}}$$
By taking logarithm we have
$$\ln f(x) = \mathop {\lim }\limits_{n \to \infty } {x \over n}\left\{ {\sum\limits_{r = 1}^n {\ln \left( {1 + {{rx} \over n}} \right) - \sum\limits_{r = 1}^n {\ln \left( {1 + {{{r^2}{x^2}} \over {{n^2}}}} \right)} } } \right\}$$
By definite integration, we can write it as
$$\ln f(x) = x\int\limits_0^1 {\ln (1 + xy)dy - x\int\limits_0^1 {\ln (1 + {x^2}{y^2})dy} } $$
Let xy = u
Then, $$\ln f(x) = \int\limits_0^x {\ln (1 + u)du - \int\limits_0^x {\ln (1 + {u^2})du} } $$
Using Newton-Leibnitz formula, we get
$${1 \over {f(x)}}\,.\,f'(x) = log\left( {{{1 + x} \over {1 + {x^2}}}} \right)$$ ...... (i)
Here, at x = 1,
$${{f'(1)} \over {f(1)}} = \log (1) = 0$$
$$\therefore$$ $$f'(1) = 0$$
Now, sign scheme of f'(x) is shown below
$$\therefore$$ At x = 1, function attains maximum. Since, f(x) increases on (0, 1).
$$\therefore$$ f(1) > f(1/2)
$$\therefore$$ Option (a) is incorrect.
f(1/3) < f(2/3)
$$\therefore$$ Option (b) is correct.
Also, f'(x) < 0, when x > 1
$$\Rightarrow$$ f'(2) < 0
$$\therefore$$ Option (c) is correct.
Also, $${{f'(x)} \over {f(x)}} = \log \left( {{{1 + x} \over {1 + {x^2}}}} \right)$$
$$\therefore$$ $${{f'(3)} \over {f(3)}} - {{f'(2)} \over {f(2)}} = \log \left( {{4 \over {10}}} \right) - \log \left( {{3 \over 5}} \right)$$
$$ = \log (2/3) < 0$$
$$ \Rightarrow {{f'(3)} \over {f(3)}} < {{f'(2)} \over {f(2)}}$$
$$\therefore$$ Option (d) is incorrect.
Comments (0)
