JEE Advance - Mathematics (2016 - Paper 2 Offline - No. 1)
$$S = \left\{ {Z \in C:Z = {1 \over {a + ibt}}, + \in R,t \ne 0} \right\}$$, where $$i = \sqrt { - 1} $$. Ifz = x + iy and z $$ \in $$ S, then (x, y) lies on
Explanation
Here, $$x + iy = {1 \over {a + ibt}} \times {{a - ibt} \over {a - ibt}}$$
$$\therefore$$ $$x + iy = {{a - ibt} \over {{a^2} + {b^2}{t^2}}}$$
Let a $$\ne$$ 0, b $$\ne$$ 0
$$\therefore$$ $$x = {a \over {{a^2} + {b^2}{t^2}}}$$ and $$y = {{ - bt} \over {{a^2} + {b^2}{t^2}}}$$
$$ \Rightarrow {y \over x} = {{ - bt} \over a} \Rightarrow t = {{ay} \over {bx}}$$
On putting $$x = {a \over {{a^2} + {b^2}{t^2}}}$$, we get
$$x\left( {{a^2} + {b^2}\,.\,{{{a^2}{y^2}} \over {{b^2}{x^2}}}} \right) = a$$
$$ \Rightarrow {a^2}({x^2} + {y^2}) = ax$$
or, $${x^2} + {y^2} - {x \over a} = 0$$ ...... (i)
or, $${\left( {x - {1 \over {2a}}} \right)^2} + {y^2} = {1 \over {4{a^2}}}$$
$$\therefore$$ Option (a) is correct.
For a $$\ne$$ 0 and b = 0,
$$x + iy = {1 \over a} \Rightarrow x = {1 \over a},\,y = 0$$
$$\Rightarrow$$ z lies on X-axis.
$$\therefore$$ Option (c) is correct.
For a = 0 and b $$\ne$$ 0,
$$x + iy = {1 \over {ibt}}$$
$$ \Rightarrow x = 0,\,y = - {1 \over {bt}}$$
$$\Rightarrow$$ z lies on Y-axis.
$$\therefore$$ Option (d) is correct.
Comments (0)
