JEE Advance - Mathematics (2017 - Paper 2 Offline)

1
If f : R $$ \to $$ R is a twice differentiable function such that f"(x) > 0 for all x$$ \in $$R, and $$f\left( {{1 \over 2}} \right) = {1 \over 2}$$, f(1) = 1, then
Answer
(B)
f'(1) > 1
2
If y = y(x) satisfies the differential equation

$${8\sqrt x \left( {\sqrt {9 + \sqrt x } } \right)dy = {{\left( {\sqrt {4 + \sqrt {9 + \sqrt x } } } \right)}^{ - 1}}}$$

dx, x > 0 and y(0) = $$\sqrt 7 $$, then y(256) =
Answer
(B)
3
3
How many 3 $$ \times $$ 3 matrices M with entries from {0, 1, 2} are there, for which the sum of the diagonal entries of MTM is 5?
Answer
(A)
198
4
Three randomly chosen nonnegative integers x, y and z are found to satisfy the equation x + y + z = 10. Then the probability that z is even, is
Answer
(C)
$${6 \over {11}}$$
5
Let S = {1, 2, 3, .........., 9}. For k = 1, 2, .........., 5, let Nk be the number of subsets of S, each containing five elements out of which exactly k are odd. Then N1 + N2 + N3 + N4 + N5 =
Answer
(C)
126
6
Let O be the origin and let PQR be an arbitrary triangle. The point S is such that

$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarrow{OR}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OR}$$ . $$\overrightarrow{OP}$$ + $$\overrightarrow{OQ}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OQ}$$ . $$\overrightarrow{OR}$$ + $$\overrightarrow{OP}$$ . $$\overrightarrow{OS}$$

Then the triangle PQR has S as its
Answer
(B)
orthocentre
7
The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes 2x + y $$-$$ 2z = 5 and 3x $$-$$ 6y $$-$$ 2z = 7 is
Answer
(D)
14x + 2y + 15z = 31
8
f : R $$ \to $$ R is a differentiable function such that f'(x) > 2f(x) for all x$$ \in $$R, and f(0) = 1 then
Answer
A
C
9
If $$I = \sum\nolimits_{k = 1}^{98} {\int_k^{k + 1} {{{k + 1} \over {x(x + 1)}}} dx} $$, then
Answer
B
D
10
If the line x = $$\alpha $$ divides the area of region R = {(x, y) $$ \in $$R2 : x3 $$ \le $$ y $$ \le $$ x, 0 $$ \le $$ x $$ \le $$ 1} into two equal parts, then
Answer
A
C
11
Let $$\alpha $$ and $$\beta $$ be non zero real numbers such that $$2(\cos \beta - \cos \alpha ) + \cos \alpha \cos \beta = 1$$. Then which of the following is/are true?
Answer
B
C
12
Let $$f(x) = {{1 - x(1 + |1 - x|)} \over {|1 - x|}}\cos \left( {{1 \over {1 - x}}} \right)$$

for x $$ \ne $$ 1. Then
Answer
C
D
13
If $$g(x) = \int_{\sin x}^{\sin (2x)} {{{\sin }^{ - 1}}} (t)\,dt$$, then
Answer
A
D
14
If $$f(x) = \left| {\matrix{ {\cos 2x} & {\cos 2x} & {\sin 2x} \cr { - \cos x} & {\cos x} & { - \sin x} \cr {\sin x} & {\sin x} & {\cos x} \cr } } \right|$$,

then
Answer
B
C
15
If the triangle PQR varies, then the minimum value of cos(P + Q) + cos(Q + R) + cos(R + P) is
Answer
(A)
$$ - {3 \over 2}$$
16
|$$\overrightarrow{OX}$$ $$ \times $$ $$\overrightarrow{OY}$$| = ?
Answer
(A)
sin(P + Q)
17
a12 = ?
Answer
(D)
a11 + a10
18
If a4 = 28, then p + 2q =
Answer
(D)
12