JEE Advance - Mathematics (2017 - Paper 2 Offline - No. 18)
If a4 = 28, then p + 2q =
14
7
21
12
Explanation
$$\alpha = {{1 + \sqrt 5 } \over 2}$$,
$$\beta = {{1 - \sqrt 5 } \over 2}$$
$${a_4} = {a_3} + {a_2}$$
$$ = 2{a_2} + {a_1}$$
$$ = 3{a_1} + 2{a_0}$$
$$28 = p(3\alpha + 2) + q(3\beta + 2)$$
$$28 = (p + q)\left( {{3 \over 2} + 2} \right) + (p - q)\left( {{{3\sqrt 5 } \over 2}} \right)$$
$$ \therefore $$ p $$-$$ q = 0
and $$(p + q) \times {7 \over 2} = 28$$
$$ \Rightarrow $$ p + q = 8
$$ \Rightarrow $$ p = q = 4
$$ \therefore $$ p + 2q = 12
$$\beta = {{1 - \sqrt 5 } \over 2}$$
$${a_4} = {a_3} + {a_2}$$
$$ = 2{a_2} + {a_1}$$
$$ = 3{a_1} + 2{a_0}$$
$$28 = p(3\alpha + 2) + q(3\beta + 2)$$
$$28 = (p + q)\left( {{3 \over 2} + 2} \right) + (p - q)\left( {{{3\sqrt 5 } \over 2}} \right)$$
$$ \therefore $$ p $$-$$ q = 0
and $$(p + q) \times {7 \over 2} = 28$$
$$ \Rightarrow $$ p + q = 8
$$ \Rightarrow $$ p = q = 4
$$ \therefore $$ p + 2q = 12
Comments (0)
