JEE Advance - Mathematics (2017 - Paper 2 Offline - No. 15)
If the triangle PQR varies, then the minimum value of cos(P + Q) + cos(Q + R) + cos(R + P) is
$$ - {3 \over 2}$$
$${3 \over 2}$$
$${5 \over 3}$$
$$ - {5 \over 3}$$
Explanation
cos(P + Q) + cos(Q + R) + cos(R + P)
= $$-$$ (cosR + cosP + cosQ)
Max. of cosP + cosQ + cosR = $${3 \over 2}$$
Min. of cos(P + Q) + cos(Q + R) + cos(R + P) is = $$ - {3 \over 2}$$
= $$-$$ (cosR + cosP + cosQ)
Max. of cosP + cosQ + cosR = $${3 \over 2}$$
Min. of cos(P + Q) + cos(Q + R) + cos(R + P) is = $$ - {3 \over 2}$$
Comments (0)
