JEE Advance - Mathematics (2017 - Paper 2 Offline - No. 14)

If $$f(x) = \left| {\matrix{ {\cos 2x} & {\cos 2x} & {\sin 2x} \cr { - \cos x} & {\cos x} & { - \sin x} \cr {\sin x} & {\sin x} & {\cos x} \cr } } \right|$$,

then
f(x) attains its minimum at x = 0
f(x) attains its maximum at x = 0
f'(x) = 0 at more than three points in ($$-$$$$\pi $$, $$\pi $$)
f'(x) = 0 at exactly three points in ($$-$$$$\pi $$, $$\pi $$)

Explanation

$$f(x) = \left| {\matrix{ {\cos 2x} & {\cos 2x} & {\sin 2x} \cr { - \cos x} & {\cos x} & { - \sin x} \cr {\sin x} & {\sin x} & {\cos x} \cr } } \right|$$

$$\cos 2x({\cos ^2}x + {\sin ^2}x) - \cos 2x( - {\cos ^2}x + {\sin ^2}x) + \sin 2x( - \sin 2x)$$

$$ = \cos 2x + \cos 4x$$

$$f'(x) = - 2\sin 2x - 4\sin 4x$$

$$ = - 2\sin 2x(1 + 4\cos 2x)$$

At x = 0

f'(x) = 0 and f(x) = 2

Also, f'(x) = 0 sin2x = 0 or $$\cos 2x = {{ - 1} \over 4}$$

$$ \Rightarrow x = {{n\pi } \over 2}$$ or $$\cos 2x = - {1 \over 4}$$

Comments (0)

Advertisement