JEE Advance - Mathematics (2017 - Paper 2 Offline - No. 6)

Let O be the origin and let PQR be an arbitrary triangle. The point S is such that

$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarrow{OR}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OR}$$ . $$\overrightarrow{OP}$$ + $$\overrightarrow{OQ}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OQ}$$ . $$\overrightarrow{OR}$$ + $$\overrightarrow{OP}$$ . $$\overrightarrow{OS}$$

Then the triangle PQR has S as its
centroid
orthocentre
incentre
circumcentre

Explanation

$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarrow{OR}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OR}$$ . $$\overrightarrow{OP}$$ + $$\overrightarrow{OQ}$$ . $$\overrightarrow{OS}$$

$$ \Rightarrow $$ $$\overrightarrow{OP}$$($$\overrightarrow{OQ}$$ $$-$$ $$\overrightarrow{OR}$$) + $$\overrightarrow{OS}$$($$\overrightarrow{OR}$$ $$-$$ $$\overrightarrow{OQ}$$) = 0

$$ \Rightarrow $$ ($$\overrightarrow{OP}$$ $$-$$ $$\overrightarrow{OS}$$)($$\overrightarrow{OQ}$$ $$-$$ $$\overrightarrow{OR}$$) = 0

$$ \Rightarrow $$ $$\overrightarrow{SP}$$ . $$\overrightarrow{RQ}$$ = 0

Similarly $$\overrightarrow{SR}$$ . $$\overrightarrow{PQ}$$ = 0 and $$\overrightarrow{SQ}$$ . $$\overrightarrow{PR}$$ = 0

$$ \therefore \overrightarrow{S}$$ is orthocentre.

Comments (0)

Advertisement