JEE Advance - Mathematics (2017 - Paper 2 Offline - No. 2)

If y = y(x) satisfies the differential equation

$${8\sqrt x \left( {\sqrt {9 + \sqrt x } } \right)dy = {{\left( {\sqrt {4 + \sqrt {9 + \sqrt x } } } \right)}^{ - 1}}}$$

dx, x > 0 and y(0) = $$\sqrt 7 $$, then y(256) =
16
3
9
80

Explanation

$${{dy} \over {dx}} = {1 \over {8\sqrt x + \sqrt {9 + \sqrt x } \sqrt {4 + \sqrt {9 + \sqrt x } } }}$$

$$ \Rightarrow y = \sqrt {4 + \sqrt { + \sqrt x } } + c$$

Now, $$y(0) = \sqrt 7 + c$$

$$ \Rightarrow c = 0$$

$$y(256) = \sqrt {4 + \sqrt {9 + \sqrt {16} } } = \sqrt {4 + 5} = 3$$

Comments (0)

Advertisement