JEE Advance - Mathematics (2010 - Paper 2 Offline)

1
Match the statement in Column-$$I$$ with the values in Column-$$II$$

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A)$$\,\,\,\,$$ A line from the origin meets the lines $$\,{{x - 2} \over 1} = {{y - 1} \over { - 2}} = {{z + 1} \over 1}$$
and $${{x - {8 \over 3}} \over 2} = {{y + 3} \over { - 1}} = {{z - 1} \over 1}$$ at $$P$$ and $$Q$$ respectively. If length $$PQ=d,$$ then $${d^2}$$ is
(B)$$\,\,\,\,$$ The values of $$x$$ satisfying $${\tan ^{ - 1}}\left( {x + 3} \right) - {\tan ^{ - 1}}\left( {x - 3} \right) = {\sin ^{ - 1}}\left( {{3 \over 5}} \right)$$ are
(C)$$\,\,\,\,$$ Non-zero vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c \,\,$$ satisfy $$\overrightarrow a \,.\,\overrightarrow b \, = 0.$$
$$\left( {\overrightarrow b - \overrightarrow a } \right).\left( {\overrightarrow b + \overrightarrow c } \right) = 0$$ and $$2\left| {\overrightarrow b + \overrightarrow c } \right| = \left| {\overrightarrow b - \overrightarrow a } \right|.$$
If $$\overrightarrow a = \mu \overrightarrow b + 4\overrightarrow c \,\,,$$ then the possible values of $$\mu $$ are
(D)$$\,\,\,\,$$ Let $$f$$ be the function on $$\left[ { - \pi ,\pi } \right]$$ given by $$f(0)=9$$
and $$f\left( x \right) = \sin \left( {{{9x} \over 2}} \right)/\sin \left( {{x \over 2}} \right)$$ for $$x \ne 0$$
The value of $${2 \over \pi }\int_{ - \pi }^\pi {f\left( x \right)dx} $$ is

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$Column-$$II$$
(p)$$\,\,\,\,$$ $$-4$$
(q)$$\,\,\,\,$$ $$0$$
(r)$$\,\,\,\,$$ $$4$$
(s)$$\,\,\,\,$$ $$5$$
(t)$$\,\,\,\,$$ $$6$$

Answer
(A)
$$\left( A \right) \to t;\,\,\left( B \right) \to p,r;\,\,\left( C \right) \to q,s;\,\,\left( D \right) \to r$$
2
Match the statements in Column I with those in Column II.

[Note : Here z takes value in the complex plane and Im z and Re z denotes, respectively, the imaginary part and the real part of z.]

Column I


(A) The set of points z satisfying $$\left| {z - i} \right|\left. {z\,} \right\|\,\, = \left| {z + i} \right|\left. {\,z} \right\|$$ is contained in or equal to
(B) The set of points z satisfying $$\left| {z + 4} \right| + \,\left| {z - 4} \right| = 10$$ is contained in or equal to
(C) If $$\left| w \right|$$= 2, then the set of points $$z = w - {1 \over w}$$ is contained in or equal to
(D) If $$\left| w \right|$$ = 1, then the set of points $$z = w + {1 \over w}$$ is contained in or equal to.

Column II


(p) an ellipse with eccentricity $${4 \over 5}$$
(q) the set of points z satisfying Im z = 0
(r) the set of points z satisfying $$\left| {{\rm{Im }}\,{\rm{z }}} \right| \le 1$$
(s) the set of points z satisfying $$\,\left| {{\mathop{\rm Re}\nolimits} \,\,z} \right| < 2$$
(t) the set of points z satisfying $$\left| {\,z} \right| \le 3$$
Answer
(B)
(A) - q, r ; (B) - p ; (C) - p, s, t ; (D) - q, r, s, t
3
Let $$f$$ be a function defined on $$R$$ (the set of all real numbers)
such that $$f'\left( x \right) = 2010\left( {x - 2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}$$ for all $$x \in $$$$R$$

If $$g$$ is a function defined on $$R$$ with values in the interval $$\left( {0,\infty } \right)$$ such that $$$f\left( x \right) = ln\,\left( {g\left( x \right)} \right),\,\,for\,\,all\,\,x \in R$$$
then the number of points in $$R$$ at which $$g$$ has a local maximum is ___________.

Answer
1
4
If the distance of the point $$P(1, -2, 1)$$ from the plane $$x+2y-2z$$$$\, = \alpha ,$$ where $$\alpha > 0,$$ is $$5,$$ then the foot of the perpendicular from $$P$$ to the planes is
Answer
(A)
$$\left( {{8 \over 3},{4 \over 3}, - {7 \over 3}} \right)$$
5
[Note :[k] denotes the largest integer less than or equal to k ]
Answer
3
6
For $$r = 0,\,1,....,$$ let $${A_r},\,{B_r}$$ and $${C_r}$$ denote, respectively, the coefficient of $${X^r}$$ in the expansions of $${\left( {1 + x} \right)^{10}},$$ $${\left( {1 + x} \right)^{20}}$$ and $${\left( {1 + x} \right)^{30}}.$$
Then $$\sum\limits_{r = 1}^{10} {{A_r}\left( {{B_{10}}{B_r} - {C_{10}}{A_r}} \right)} $$ is equal to
Answer
(D)
$${{C_{10}} - {B_{10}}}$$
7
Let $${a_1},\,{a_{2\,}},\,{a_3}$$......,$${a_{11}}$$ be real numbers satisfying $${a_1} = 15,27 - 2{a_2} > 0\,\,and\,\,{a_k} = 2{a_{k - 1}} - {a_{k - 2}}\,\,for\,k = 3,4,........11$$. if $$\,\,\,{{a_1^2 + a_2^2 + .... + a_{11}^2} \over {11}} = 90$$, then the value of $${{{a_1} + {a_2} + .... + {a_{11}}} \over {11}}$$ is equal to :
Answer
0
8

Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The coordinates of $$A$$ and $$B$$ are

Answer
(D)
$$(3,0)$$ and $$\left( { - {9 \over 5},{8 \over 5}} \right)$$
9
The orthocentre of the triangle $$PAB$$ is
Answer
(C)
$$\left( {{11 \over 5},{{8} \over 5}} \right)$$
10
Let $$f$$ be a function defined on $$R$$ (the set of all real numbers)
such that $$f'\left( x \right) = 2010\left( {x - 2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}$$ for all $$x \in $$$$R$$

If $$g$$ is a function defined on $$R$$ with values in the interval $$\left( {0,\infty } \right)$$ such that $$$f\left( x \right) = ln\,\left( {g\left( x \right)} \right),\,\,for\,\,all\,\,x \in R$$$
then the number of points in $$R$$ at which $$g$$ has a local maximum is ___________.

Answer
1
11
Let $$f$$ be a real-valued function defined on the interval $$(-1, 1)$$ such that
$${e^{ - x}}f\left( x \right) = 2 + \int\limits_0^x {\sqrt {{t^4} + 1} \,\,dt,} $$ for all $$x \in \left( { - 1,1} \right)$$,
and let $${f^{ - 1}}$$ be the inverse function of $$f$$. Then $$\left( {{f^{ - 1}}} \right)'\left( 2 \right)$$ is equal to
Answer
(B)
$${{1 \over 3}}$$
12

Let $k$ be a positive real number and let

$$ \begin{aligned} A & =\left[\begin{array}{ccc} 2 k-1 & 2 \sqrt{k} & 2 \sqrt{k} \\ 2 \sqrt{k} & 1 & -2 k \\ -2 \sqrt{k} & 2 k & -1 \end{array}\right] \text { and } \\\\ \mathbf{B} & =\left[\begin{array}{ccc} 0 & 2 k-1 & \sqrt{k} \\ 1-2 k & 0 & 2 \sqrt{k} \\ -\sqrt{k} & -2 \sqrt{k} & 0 \end{array}\right] . \end{aligned} $$

If $\operatorname{det}(\operatorname{adj} A)+\operatorname{det}(\operatorname{adj} B)=10^6$, then $[k]$

is equal to _________.

[ Note : adj M denotes the adjoint of a square matrix M and $[k]$ denotes the largest integer less than or equal to $k$ ].

Answer
4
13

Let $k$ be a positive real number and let

$$ \begin{aligned} A & =\left[\begin{array}{ccc} 2 k-1 & 2 \sqrt{k} & 2 \sqrt{k} \\ 2 \sqrt{k} & 1 & -2 k \\ -2 \sqrt{k} & 2 k & -1 \end{array}\right] \text { and } \\\\ \mathbf{B} & =\left[\begin{array}{ccc} 0 & 2 k-1 & \sqrt{k} \\ 1-2 k & 0 & 2 \sqrt{k} \\ -\sqrt{k} & -2 \sqrt{k} & 0 \end{array}\right] . \end{aligned} $$

If $\operatorname{det}(\operatorname{adj} A)+\operatorname{det}(\operatorname{adj} B)=10^6$, then $[k]$

is equal to _________.

[ Note : adj M denotes the adjoint of a square matrix M and $[k]$ denotes the largest integer less than or equal to $k$ ].

Answer
4
14
Let $S=\{1,2,3,4\}$. The total number of unordered pairs of disjoint subsets of $S$ is equal to :
Answer
(D)
41
15

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The area bounded by the curve $$y=f(x)$$ and the lines $$x=0,$$ $$y=0$$ and $$x=t,$$ lies in the interval

Answer
(A)
$$\left( {{3 \over 4},3} \right)$$
16

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The real numbers lies in the interval

Answer
(C)
$$\left( { - {3 \over 4}, - {1 \over 2}} \right)$$
17

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The function$$f'(x)$$ is

Answer
(B)
decreasing in $$\left( { - t, - {1 \over 4}} \right)$$ and increasing in $$\left( { - {1 \over 4},t} \right)$$
18
A signal which can be green or red with probability $${4 \over 5}$$ and $${1 \over 5}$$ respectively, is received by station A and then transmitted to station $$B$$. The probability of each station receving the signal correctly is $${3 \over 4}$$. If the signal received at atation $$B$$ is green, then the probability that the original signal was green is
Answer
(C)
$${20 \over 23}$$
19
Two adjacent sides of a parallelogram $$ABCD$$ are given by
$$\overrightarrow {AB} = 2\widehat i + 10\widehat j + 11\widehat k$$ and $$\,\overrightarrow {AD} = -\widehat i + 2\widehat j + 2\widehat k$$
The side $$AD$$ is rotated by an acute angle $$\alpha $$ in the plane of the parallelogram so that $$AD$$ becomes $$AD'.$$ If $$AD'$$ makes a right angle with the side $$AB,$$ then the cosine of the angle $$\alpha $$ is given by
Answer
(B)
$${{{\sqrt {17} } \over 9}}$$