JEE MAIN - Mathematics (2025 - 8th April Evening Shift)

1
Let the values of $\lambda$ for which the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$
and $\frac{x-\lambda}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is $\frac{1}{\sqrt{6}}$ be $\lambda_1$ and $\lambda_2$. Then the radius of the circle passing through the
points $(0, 0), (\lambda_1, \lambda_2)$ and $(\lambda_2, \lambda_1)$ is
Answer
(B)
$\frac{5\sqrt{2}}{3}$
2
Let $f(x) = x - 1$ and $g(x) = e^x$ for $x \in \mathbb{R}$. If $\frac{dy}{dx} = \left( e^{-2\sqrt{x}} g\left(f(f(x))\right) - \frac{y}{\sqrt{x}} \right)$, $y(0) = 0$, then $y(1)$ is
Answer
(B)
$\frac{e-1}{e^4}$
3

If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \ldots \infty= \frac{\pi^4}{90} $,

$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \ldots \infty= \alpha $,

$ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \ldots \infty= \beta $,

then $ \frac{\alpha}{\beta} $ is equal to :

Answer
(D)
15
4
Let a be the length of a side of a square OABC with O being the origin. Its side OA makes an acute angle $$\alpha $$ with the positive x-axis and the equations of its diagonals are $(\sqrt{3}+1)x+(\sqrt{3}-1)y=0$ and $(\sqrt{3}-1)x-(\sqrt{3}+1)y+8\sqrt{3}=0$. Then $a$2 is equal to :
Answer
(A)
48
5
A line passing through the point P($a$, 0) makes an acute angle $$\alpha $$ with the positive x-axis. Let this line be rotated about the point P through an angle $\frac{\alpha}{2}$ in the clockwise direction. If in the new position, the slope of the line is $2 - \sqrt{3}$ and its distance from the origin is $\frac{1}{\sqrt{2}}$, then the value of $3a^2 \tan^2 \alpha - 2\sqrt{3}$ is :
Answer
(B)
4
6

Let α be a solution of $x^2 + x + 1 = 0$, and for some a and b in

$R, \begin{bmatrix} 4 & a & b \end{bmatrix} \begin{bmatrix} 1 & 16 & 13 \\ -1 & -1 & 2 \\ -2 & -14 & -8 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$. If $\frac{4}{\alpha^4} + \frac{m}{\alpha^a} + \frac{n}{\alpha^b} = 3$, then m + n is equal to _______

Answer
(A)
11
7
Let the ellipse $3x^2 + py^2 = 4$ pass through the centre $C$ of the circle $x^2 + y^2 - 2x - 4y - 11 = 0$ of radius $r$. Let $f_1, f_2$ be the focal distances of the point $C$ on the ellipse. Then $6f_1f_2 - r$ is equal to
Answer
(C)
70
8
The sum of the squares of the roots of $ |x-2|^2 + |x-2| - 2 = 0 $ and the squares of the roots of $ x^2 - 2|x-3| - 5 = 0 $, is
Answer
(C)
36
9
The value of $ \cot^{-1} \left( \frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)} \right) - \cot^{-1} \left( \frac{\sqrt{1 + \tan^2\left(\frac{1}{2}\right)} + 1}{\tan\left(\frac{1}{2}\right)} \right) $ is equal to
Answer
(C)
$ \pi - \frac{5}{4} $
10
Let $ A = \left\{ \theta \in [0, 2\pi] : 1 + 10\operatorname{Re}\left( \frac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta} \right) = 0 \right\} $. Then $ \sum\limits_{\theta \in A} \theta^2 $ is equal to
Answer
(A)
$ \frac{21}{4} \pi^2 $
11

Given below are two statements:

Statement I: $ \lim\limits_{x \to 0} \left( \frac{\tan^{-1} x + \log_e \sqrt{\frac{1+x}{1-x}} - 2x}{x^5} \right) = \frac{2}{5} $

Statement II: $ \lim\limits_{x \to 1} \left( x^{\frac{2}{1-x}} \right) = \frac{1}{e^2} $

In the light of the above statements, choose the correct answer from the options given below:

Answer
(C)
Both Statement I and Statement II are true
12
The integral $\int\limits_{-1}^{\frac{3}{2}} \left(| \pi^2 x \sin(\pi x) \right|) dx$ is equal to:
Answer
(C)
$1 + 3\pi$
13

Let $ A = \begin{bmatrix} 2 & 2+p & 2+p+q \\ 4 & 6+2p & 8+3p+2q \\ 6 & 12+3p & 20+6p+3q \end{bmatrix} $.

If $ \det(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n $, $ m, n \in \mathbb{N} $, then $ m + n $ is equal to

Answer
(C)
24
14

Let A = {0, 1, 2, 3, 4, 5}. Let R be a relation on A defined by (x, y) ∈ R if and only if max{x, y} ∈ {3, 4}. Then among the statements

(S1): The number of elements in R is 18, and

(S2): The relation R is symmetric but neither reflexive nor transitive

Answer
(C)
only (S2) is true
15
Let f(x) be a positive function and $I_{1} = \int\limits_{-\frac{1}{2}}^{1} 2x \, f(2x(1-2x)) \, dx$ and $I_{2} = \int\limits_{-1}^{2} f(x(1-x)) \, dx$. Then the value of $\frac{I_{2}}{I_{1}}$ is equal to ________
Answer
(D)
4
16
There are 12 points in a plane, no three of which are in the same straight line, except 5 points which are collinear. Then the total number of triangles that can be formed with the vertices at any three of these 12 points is
Answer
(B)
210
17
If A and B are two events such that $P(A) = 0.7$, $P(B) = 0.4$ and $P(A \cap \overline{B}) = 0.5$, where $\overline{B}$ denotes the complement of B, then $P\left(B \mid (A \cup \overline{B})\right)$ is equal to
Answer
(C)
$\frac{1}{4}$
18
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $ and $ \vec{b} = 2\hat{i} + \hat{j} - \hat{k} $. Let $ \hat{c} $ be a unit vector in the plane of the vectors $ \vec{a} $ and $ \vec{b} $ and be perpendicular to $ \vec{a} $. Then such a vector $ \hat{c} $ is:
Answer
(A)
$ \frac{1}{\sqrt{2}}(-\hat{i} + \hat{k}) $
19
Let the function $ f(x) = \frac{x}{3} + \frac{3}{x} + 3, x \neq 0 $ be strictly increasing in $(-\infty, \alpha_1) \cup (\alpha_2, \infty)$ and strictly decreasing in $(\alpha_3, \alpha_4) \cup (\alpha_4, \alpha_5)$. Then $ \sum\limits_{i=1}^{5} \alpha_i^2 $ is equal to
Answer
(C)
36
20
The number of integral terms in the expansion of $ \left( {5^\frac{1}{2}} + 7^\frac{1}{8} \right)^{1016} $ is:
Answer
(B)
128
21
The product of the last two digits of $(1919)^{1919}$ is
Answer
63
22
Let the area of the bounded region $\left\{(x, y): 0 \leq 9 x \leq y^2, y \geq 3 x-6\right\}$ be $A$. Then $6 A$ is equal to _________.
Answer
15
23
Let $r$ be the radius of the circle, which touches $x$ - axis at point $(a, 0), a<0$ and the parabola $\mathrm{y}^2=9 x$ at the point $(4,6)$. Then $r$ is equal to ______.
Answer
30
24
Let the area of the triangle formed by the lines $x+2=y-1=z, \frac{x-3}{5}=\frac{y}{-1}=\frac{z-1}{1}$ and $\frac{x}{-3}=\frac{y-3}{3}=\frac{z-2}{1}$ be $A$. Then $A^2$ is equal to ________.
Answer
56
25

Let the domain of the function $f(x)=\cos ^{-1}\left(\frac{4 x+5}{3 x-7}\right)$ be $[\alpha, \beta]$ and the domain of $g(x)=\log _2\left(2-6 \log _{27}(2 x+5)\right)$ be $(\gamma, \delta)$.

Then $|7(\alpha+\beta)+4(\gamma+\delta)|$ is equal to ______________.

Answer
96