JEE MAIN - Mathematics (2025 - 8th April Evening Shift - No. 21)

The product of the last two digits of $(1919)^{1919}$ is
Answer
63

Explanation

$$\begin{aligned} & (1919)^{1919}=(1920-1)^{1919} \\ & ={ }^{1919} \mathrm{C}_0(1920)^{1919}-{ }^{1919} \mathrm{C}_1(1920)^{1918}+\ldots . \\ & +{ }^{1919} \mathrm{C}_{1918}(1920)^1-{ }^{1919} \mathrm{C}_{1919} \\ & =100 \lambda+1919 \times 1920-1 \\ & =100 \lambda+3684480-1 \\ & =100 \lambda+\ldots \ldots \ldots . .79 \text { (last two digit) } \\ & \Rightarrow \text { Number having last two digit } 79 \\ & \therefore \text { Product of last two digit } 63 \end{aligned}$$

Comments (0)

Advertisement