JEE MAIN - Mathematics (2025 - 8th April Evening Shift - No. 11)

Given below are two statements:

Statement I: $ \lim\limits_{x \to 0} \left( \frac{\tan^{-1} x + \log_e \sqrt{\frac{1+x}{1-x}} - 2x}{x^5} \right) = \frac{2}{5} $

Statement II: $ \lim\limits_{x \to 1} \left( x^{\frac{2}{1-x}} \right) = \frac{1}{e^2} $

In the light of the above statements, choose the correct answer from the options given below:

Statement I is false but Statement II is true
Both Statement I and Statement II are false
Both Statement I and Statement II are true
Statement I is true but Statement II is false

Explanation

$$\begin{aligned} &\begin{aligned} & \lim _{x \rightarrow 0} \frac{\tan ^{-1} x+\frac{1}{2}[\ln (1+x)-\ln (1-x)]-2 x}{x^5} \\ & =\lim _{x \rightarrow 0} \frac{\left(x-\frac{x^3}{3}+\frac{x^5}{5} \ldots\right)+\frac{1}{2}\left[x-\frac{x^2}{2}+\frac{x^3}{3} \ldots-\left(-x-\frac{x^2}{2}-\frac{x^3}{3} \ldots\right)\right]-2 x}{x^5} \\ & =\lim _{x \rightarrow 0} \frac{2 x+\frac{2 x^5}{5} \ldots .-2 x}{x^5}=\frac{2}{5} \\ & \lim _{x \rightarrow 1} x^{\frac{2}{(1-x)}}=e^{\lim _{x \rightarrow 1}\left(\frac{2}{1-x}\right)(x-1)}=e^{-2} \end{aligned}\\ &\Rightarrow \text { Both statements correct } \end{aligned}$$

Comments (0)

Advertisement