JEE MAIN - Mathematics (2025 - 8th April Evening Shift - No. 12)

The integral $\int\limits_{-1}^{\frac{3}{2}} \left(| \pi^2 x \sin(\pi x) \right|) dx$ is equal to:
$2 + 3\pi$
$4 + \pi$
$1 + 3\pi$
$3 + 2\pi$

Explanation

$$\begin{aligned} &\text { Let, } \mathrm{I}=\pi^2 \int_{-1}^{3 / 2}|\mathrm{x} \sin \pi \mathrm{x}| \mathrm{dx}\\ &\begin{aligned} & =\pi^2\left\{\int_{-1}^1 \mathrm{x} \sin \pi \mathrm{xdx}-\int_1^{3 / 2} \mathrm{x} \sin \pi \mathrm{xdx}\right\} \\ & =\pi^2\left\{2 \int_0^1 \mathrm{x} \sin \pi \mathrm{xdx}-\int_{-1}^{3 / 2} \mathrm{x} \sin \pi \mathrm{xdx}\right\} \end{aligned} \end{aligned}$$

$$\begin{aligned} &\text { Consider }\\ &\begin{aligned} & \int \mathrm{x} \sin \pi \mathrm{xdx} \\ & -\mathrm{x} \cdot \frac{1}{\pi} \cos \pi \mathrm{x}+\int 1 \cdot \frac{1}{\pi} \cos \pi \mathrm{xdx} \\ & =--\frac{\mathrm{x}}{\pi} \cos \pi \mathrm{x}+\frac{\sin \pi \mathrm{x}}{\pi^2} \\ & \mathrm{I}=\pi^2\left\{2\left(-\frac{\mathrm{x}}{\pi} \cos \pi \mathrm{x}+\frac{\sin \pi \mathrm{x}}{\pi^2}\right)_0^1-\left(-\frac{\mathrm{x}}{\pi} \cos \pi \mathrm{x}+\frac{\sin \pi \mathrm{x}}{\pi^2}\right)_1^{3 / 2}\right\} \\ & =\pi^2\left\{\frac{2}{\pi}-\left(-\frac{1}{\pi^2}-\frac{1}{\pi}\right)\right\} \\ & =\pi^2\left\{\frac{3}{\pi}+\frac{1}{\pi^2}\right\} \\ & =3 \pi+1 \end{aligned} \end{aligned}$$

Comments (0)

Advertisement