JEE MAIN - Mathematics (2025 - 8th April Evening Shift - No. 18)
Explanation
Let vector $\vec{p}$ in plane of $\vec{a} \& \vec{b}=K(\vec{a}+\lambda \vec{b})$
$$\begin{aligned} & \overrightarrow{\mathrm{p}} \perp \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{a}}=0 \\ & \Rightarrow \mathrm{~K}(\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{\mathrm{a}}=0 \\ & \Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}}=0 \\ & \Rightarrow 6+\lambda(3)=0 \\ & \Rightarrow \lambda=-2 \\ & \Rightarrow \overrightarrow{\mathrm{p}}=(-3 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}) \end{aligned}$$
Unit vector $\rightarrow \pm \frac{(-\hat{\mathrm{i}}+\hat{\mathrm{k}})}{\sqrt{2}}$
Comments (0)
