JEE MAIN - Mathematics (2025 - 8th April Evening Shift - No. 23)
Let $r$ be the radius of the circle, which touches $x$ - axis at point $(a, 0), a<0$ and the parabola $\mathrm{y}^2=9 x$ at the point $(4,6)$. Then $r$ is equal to ______.
Answer
30
Explanation
$$\begin{aligned} & (x-a)^2+(y-r)^2=r^2 \\ & (4-a)^2+(6-r)^2=r^2 \\ & 16+a^2-8 a+36+r^2-12 r=r^2 \\ & a^2-8 a-12 r+52=0 \end{aligned}$$
Tangent to parabola at $(4,6)$ is
$$6.4=9 .\left(\frac{x+4}{2}\right) \text { i.e. } 3 x-4 y+12=0$$
This is also tangent to the circle
$$\begin{aligned} & \therefore \quad C P=r \\ & \frac{3 a-4 r+12}{5}= \pm r \end{aligned}$$
$3 \mathrm{a}+12=4 \mathrm{r} \pm 5 \mathrm{r}\left\{\begin{array}{l}\mathrm{ar} \\ -\mathrm{r}\end{array}\right.\quad\text{..... (1)}$
equation of circle is
$$(x-a)^2+(y-r)^2=r^2$$
satsty $P(4,6) \Rightarrow a^2-8 a-12 r+52=0\quad\text{..... (2)}$
From equation (1)
If $\mathrm{a}+4=3 \mathrm{r}$ then $\mathrm{a}=+6$ (rejected)
If $3 a+12=-r$ then $a=-14$ and $r=30$
Comments (0)
