JEE MAIN - Mathematics (2025 - 8th April Evening Shift - No. 17)
Explanation
$$\begin{aligned} & \mathrm{P}(\mathrm{~A})=\frac{7}{10}, \mathrm{P}(\mathrm{~B})=\frac{4}{10} \\ & \mathrm{P}(\mathrm{~A} \cup \overline{\mathrm{~B}})=\frac{5}{10} \\ & \mathrm{P}\left(\frac{\mathrm{~B}}{\mathrm{~A} \cup \overline{\mathrm{~B}}}\right)=\frac{\mathrm{P}(\mathrm{~B} \cap(\mathrm{~A} \cup \overline{\mathrm{~B}}))}{\mathrm{P}(\mathrm{~A} \cup \overline{\mathrm{~B}})} \\ & =\frac{\mathrm{P}((\mathrm{~B} \cap \overline{\mathrm{~B}}) \cup(\mathrm{B} \cap \mathrm{~A}))}{\mathrm{P}(\mathrm{~A} \cup \overline{\mathrm{~B}})}=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~A} \cup \overline{\mathrm{~B}})} \end{aligned}$$
$$\begin{aligned} & =\frac{\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~A} \cap \overline{\mathrm{~B}})}{\mathrm{P}(\mathrm{~A})+\mathrm{P}(\overline{\mathrm{~B}})-\mathrm{P}(\mathrm{~A} \cap \overline{\mathrm{~B}})}=\frac{\frac{7}{10}-\frac{5}{10}}{\frac{7}{10}+\left(1-\frac{4}{10}\right)-\frac{5}{10}} \\ & =\frac{2}{8}=\frac{1}{4} \end{aligned}$$
Comments (0)
