JEE MAIN - Mathematics (2025 - 8th April Evening Shift - No. 17)

If A and B are two events such that $P(A) = 0.7$, $P(B) = 0.4$ and $P(A \cap \overline{B}) = 0.5$, where $\overline{B}$ denotes the complement of B, then $P\left(B \mid (A \cup \overline{B})\right)$ is equal to
$\frac{1}{3}$
$\frac{1}{2}$
$\frac{1}{4}$
$\frac{1}{6}$

Explanation

$$\begin{aligned} & \mathrm{P}(\mathrm{~A})=\frac{7}{10}, \mathrm{P}(\mathrm{~B})=\frac{4}{10} \\ & \mathrm{P}(\mathrm{~A} \cup \overline{\mathrm{~B}})=\frac{5}{10} \\ & \mathrm{P}\left(\frac{\mathrm{~B}}{\mathrm{~A} \cup \overline{\mathrm{~B}}}\right)=\frac{\mathrm{P}(\mathrm{~B} \cap(\mathrm{~A} \cup \overline{\mathrm{~B}}))}{\mathrm{P}(\mathrm{~A} \cup \overline{\mathrm{~B}})} \\ & =\frac{\mathrm{P}((\mathrm{~B} \cap \overline{\mathrm{~B}}) \cup(\mathrm{B} \cap \mathrm{~A}))}{\mathrm{P}(\mathrm{~A} \cup \overline{\mathrm{~B}})}=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~A} \cup \overline{\mathrm{~B}})} \end{aligned}$$

$$\begin{aligned} & =\frac{\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~A} \cap \overline{\mathrm{~B}})}{\mathrm{P}(\mathrm{~A})+\mathrm{P}(\overline{\mathrm{~B}})-\mathrm{P}(\mathrm{~A} \cap \overline{\mathrm{~B}})}=\frac{\frac{7}{10}-\frac{5}{10}}{\frac{7}{10}+\left(1-\frac{4}{10}\right)-\frac{5}{10}} \\ & =\frac{2}{8}=\frac{1}{4} \end{aligned}$$

Comments (0)

Advertisement