JEE MAIN - Mathematics (2025 - 22nd January Evening Shift)
1
Let $\alpha_\theta$ and $\beta_\theta$ be the distinct roots of $2 x^2+(\cos \theta) x-1=0, \theta \in(0,2 \pi)$. If m and M are the minimum and the maximum values of $\alpha_\theta^4+\beta_\theta^4$, then $16(M+m)$ equals :
Answer
(C)
25
2
Let a line pass through two distinct points $P(-2,-1,3)$ and $Q$, and be parallel to the vector $3 \hat{i}+2 \hat{j}+2 \hat{k}$. If the distance of the point Q from the point $\mathrm{R}(1,3,3)$ is 5 , then the square of the area of $\triangle P Q R$ is equal to :
where $a, b \in \mathbf{R}$, has infinitely many solutions, then $7 a+3 b$ is equal to :
Answer
(D)
16
4
The sum of all values of $\theta \in[0,2 \pi]$ satisfying $2 \sin ^2 \theta=\cos 2 \theta$ and $2 \cos ^2 \theta=3 \sin \theta$ is
Answer
(A)
$\pi$
5
Let $\alpha, \beta, \gamma$ and $\delta$ be the coefficients of $x^7, x^5, x^3$ and $x$ respectively in the expansion of
$$\begin{aligned}
& \left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5, x>1 \text {. If } u \text { and } v \text { satisfy the equations } \\\\
& \alpha u+\beta v=18, \\\\
& \gamma u+\delta v=20,
\end{aligned}$$
then $\mathrm{u+v}$ equals :
Answer
(C)
5
6
The perpendicular distance, of the line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+3}{2}$ from the point $\mathrm{P}(2,-10,1)$, is :
Answer
(C)
$3 \sqrt{5}$
7
If $x=f(y)$ is the solution of the differential equation $\left(1+y^2\right)+\left(x-2 \mathrm{e}^{\tan ^{-1} y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0, y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with $f(0)=1$, then $f\left(\frac{1}{\sqrt{3}}\right)$ is equal to :
Answer
(C)
$\mathrm{e}^{\pi / 6}$
8
If $A$ and $B$ are two events such that $P(A \cap B)=0.1$, and $P(A \mid B)$ and $P(B \mid A)$ are the roots of the equation $12 x^2-7 x+1=0$, then the value of $\frac{P(\bar{A} \cup \bar{B})}{P(\bar{A} \cap \bar{B})}$ is :
Answer
(C)
$\frac{9}{4}$
9
For a $3 \times 3$ matrix $M$, let trace $(M)$ denote the sum of all the diagonal elements of $M$. Let $A$ be a $3 \times 3$ matrix such that $|A|=\frac{1}{2}$ and trace $(A)=3$. If $B=\operatorname{adj}(\operatorname{adj}(2 A))$, then the value of $|B|+$ trace $(B)$ equals :
Answer
(D)
280
10
If $\int \mathrm{e}^x\left(\frac{x \sin ^{-1} x}{\sqrt{1-x^2}}+\frac{\sin ^{-1} x}{\left(1-x^2\right)^{3 / 2}}+\frac{x}{1-x^2}\right) \mathrm{d} x=\mathrm{g}(x)+\mathrm{C}$, where C is the constant of integration, then $g\left(\frac{1}{2}\right)$ equals :
Answer
(A)
$\frac{\pi}{6} \sqrt{\frac{\mathrm{e}}{3}}$
11
Let $\vec{a}$ and $\vec{b}$ be two unit vectors such that the angle between them is $\frac{\pi}{3}$. If $\lambda \vec{a}+2 \vec{b}$ and $3 \vec{a}-\lambda \vec{b}$ are perpendicular to each other, then the number of values of $\lambda$ in $[-1,3]$ is :
Answer
(D)
0
12
The area of the region enclosed by the curves $y=x^2-4 x+4$ and $y^2=16-8 x$ is :
Answer
(A)
$\frac{8}{3}$
13
In a group of 3 girls and 4 boys, there are two boys $B_1$ and $B_2$. The number of ways, in which these girls and boys can stand in a queue such that all the girls stand together, all the boys stand together, but $B_1$ and $B_2$ are not adjacent to each other, is :
Answer
(D)
144
14
If $\lim _\limits{x \rightarrow \infty}\left(\left(\frac{\mathrm{e}}{1-\mathrm{e}}\right)\left(\frac{1}{\mathrm{e}}-\frac{x}{1+x}\right)\right)^x=\alpha$, then the value of $\frac{\log _{\mathrm{e}} \alpha}{1+\log _{\mathrm{e}} \alpha}$ equals :
Answer
(C)
$e$
15
Let $f(x)=\int_0^{x^2} \frac{\mathrm{t}^2-8 \mathrm{t}+15}{\mathrm{e}^{\mathrm{t}}} \mathrm{dt}, x \in \mathbf{R}$. Then the numbers of local maximum and local minimum points of $f$, respectively, are :
Answer
(C)
2 and 3
16
Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{1,4,9,16\}$. Then the number of many-one functions $f: \mathrm{A} \rightarrow \mathrm{B}$ such that $1 \in f(\mathrm{~A})$ is equal to :
Answer
(A)
151
17
Let the curve $z(1+i)+\bar{z}(1-i)=4, z \in C$, divide the region $|z-3| \leq 1$ into two parts of areas $\alpha$ and $\beta$. Then $|\alpha-\beta|$ equals :
Answer
(C)
$1+\frac{\pi}{2}$
18
Suppose that the number of terms in an A.P. is $2 k, k \in N$. If the sum of all odd terms of the A.P. is 40 , the sum of all even terms is 55 and the last term of the A.P. exceeds the first term by 27 , then k is equal to:
Answer
(D)
5
19
Let $\mathrm{P}(4,4 \sqrt{3})$ be a point on the parabola $y^2=4 \mathrm{a} x$ and PQ be a focal chord of the parabola. If M and N are the foot of perpendiculars drawn from P and Q respectively on the directrix of the parabola, then the area of the quadrilateral PQMN is equal to :
Answer
(B)
$\frac{343 \sqrt{3}}{8}$
20
Let $\mathrm{E}: \frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ and $\mathrm{H}: \frac{x^2}{\mathrm{~A}^2}-\frac{y^2}{\mathrm{~B}^2}=1$. Let the distance between the foci of E and the foci of $H$ be $2 \sqrt{3}$. If $a-A=2$, and the ratio of the eccentricities of $E$ and $H$ is $\frac{1}{3}$, then the sum of the lengths of their latus rectums is equal to :
Answer
(D)
8
21
Let $\mathrm{A}(6,8), \mathrm{B}(10 \cos \alpha,-10 \sin \alpha)$ and $\mathrm{C}(-10 \sin \alpha, 10 \cos \alpha)$, be the vertices of a triangle. If $L(a, 9)$ and $G(h, k)$ be its orthocenter and centroid respectively, then $(5 a-3 h+6 k+100 \sin 2 \alpha)$ is equal to ___________.
Answer
145
22
Let $y=f(x)$ be the solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{x y}{x^2-1}=\frac{x^6+4 x}{\sqrt{1-x^2}},-1< x<1$ such that $f(0)=0$. If $6 \int_{-1 / 2}^{1 / 2} f(x) \mathrm{d} x=2 \pi-\alpha$ then $\alpha^2$ is equal to _________ .
Answer
27
23
If $\sum_\limits{r=1}^{30} \frac{r^2\left({ }^{30} C_r\right)^2}{{ }^{30} C_{r-1}}=\alpha \times 2^{29}$, then $\alpha$ is equal to _________.
Answer
465
24
Let the distance between two parallel lines be 5 units and a point $P$ lie between the lines at a unit distance from one of them. An equilateral triangle $P Q R$ is formed such that $Q$ lies on one of the parallel lines, while R lies on the other. Then $(Q R)^2$ is equal to _________.
Answer
28
25
Let $A=\{1,2,3\}$. The number of relations on $A$, containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is _________.