JEE MAIN - Mathematics (2025 - 22nd January Evening Shift - No. 15)
Explanation
We are given
$$ f(x)=\int_0^{x^2} \frac{t^2-8t+15}{e^t}\,dt, \quad x\in\mathbb{R}. $$
To find the local extrema, we first compute the derivative using the Fundamental Theorem of Calculus and the chain rule.
Step 1. Rewrite the derivative:
Let
$$ F(u)=\int_0^u \frac{t^2-8t+15}{e^t}\,dt, $$
so that
$$ f(x)=F(x^2). $$
Then by the chain rule,
$$ f'(x)=F'(x^2)\cdot 2x. $$
Since
$$ F'(u)=\frac{u^2-8u+15}{e^u}, $$
we substitute $u=x^2$ to get
$$ f'(x)=\frac{(x^2)^2-8x^2+15}{e^{x^2}}\cdot 2x = \frac{2x\,(x^4-8x^2+15)}{e^{x^2}}. $$
Step 2. Factor and Identify Critical Points:
Factor the polynomial $x^4-8x^2+15$ by writing it in terms of $x^2$. Let $y=x^2$, then
$$ y^2-8y+15=(y-3)(y-5) $$
so that
$$ x^4-8x^2+15=(x^2-3)(x^2-5). $$
Thus,
$$ f'(x)=\frac{2x\,(x^2-3)(x^2-5)}{e^{x^2}}. $$
Since $e^{x^2}>0$ for all $x$, the zeros of $f'(x)$ are determined by
$$ 2x\,(x^2-3)(x^2-5)=0. $$
That gives the critical points:
$2x=0 \Rightarrow x=0$,
$x^2-3=0 \Rightarrow x=\pm\sqrt{3}$,
$x^2-5=0 \Rightarrow x=\pm\sqrt{5}$.
Step 3. Analyzing the Sign of $f'(x)$:
We need to determine the nature (maximum or minimum) by looking at the sign changes of $f'(x)$ on the intervals determined by the critical points $x=-\sqrt{5}$, $x=-\sqrt{3}$, $x=0$, $x=\sqrt{3}$, and $x=\sqrt{5}$. Notice that the factor $2x\,(x^2-3)(x^2-5)$ will dictate the sign.
Let’s define:
$$ h(x)=x\,(x^2-3)(x^2-5). $$
Examine the sign of $h(x)$ in each interval:
For $x < -\sqrt{5}$:
$x$ is negative.
$x^2>5$ so $x^2-3>0$ and $x^2-5>0$.
Product: negative $\times$ positive $\times$ positive = negative.
Thus, $f'(x)<0$.
For $-\sqrt{5} < x < -\sqrt{3}$:
$x$ is negative.
$x^2$ is between 3 and 5 so $x^2-3>0$ while $x^2-5<0$.
Product: negative $\times$ positive $\times$ negative = positive.
Thus, $f'(x)>0$.
For $-\sqrt{3} < x < 0$:
$x$ is negative.
$x^2<3$ so both $x^2-3<0$ and $x^2-5<0$.
Product: negative $\times$ negative $\times$ negative = negative.
Thus, $f'(x)<0$.
For $0 < x < \sqrt{3}$:
$x$ is positive.
$x^2<3$ so both $x^2-3<0$ and $x^2-5<0$.
Product: positive $\times$ negative $\times$ negative = positive.
Thus, $f'(x)>0$.
For $\sqrt{3} < x < \sqrt{5}$:
$x$ is positive.
$x^2$ is between 3 and 5 so $x^2-3>0$ while $x^2-5<0$.
Product: positive $\times$ positive $\times$ negative = negative.
Thus, $f'(x)<0$.
For $x > \sqrt{5}$:
$x$ is positive.
$x^2>5$ so both $x^2-3>0$ and $x^2-5>0$.
Product: positive $\times$ positive $\times$ positive = positive.
Thus, $f'(x)>0$.
Step 4. Classify the Critical Points:
At $x=-\sqrt{5}$: $f'(x)$ changes from negative to positive → local minimum.
At $x=-\sqrt{3}$: $f'(x)$ changes from positive to negative → local maximum.
At $x=0$: $f'(x)$ changes from negative to positive → local minimum.
At $x=\sqrt{3}$: $f'(x)$ changes from positive to negative → local maximum.
At $x=\sqrt{5}$: $f'(x)$ changes from negative to positive → local minimum.
Step 5. Conclusion:
There are local maximum points at $x=-\sqrt{3}$ and $x=\sqrt{3}$ (2 points in total), and local minimum points at $x=-\sqrt{5}$, $x=0$, and $x=\sqrt{5}$ (3 points in total).
Thus, the numbers of local maximum and local minimum points of $f$ are 2 and 3, respectively.
The correct option is Option C.
Comments (0)
