JEE MAIN - Mathematics (2025 - 22nd January Evening Shift - No. 5)

Let $\alpha, \beta, \gamma$ and $\delta$ be the coefficients of $x^7, x^5, x^3$ and $x$ respectively in the expansion of

$$\begin{aligned} & \left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5, x>1 \text {. If } u \text { and } v \text { satisfy the equations } \\\\ & \alpha u+\beta v=18, \\\\ & \gamma u+\delta v=20, \end{aligned}$$

then $\mathrm{u+v}$ equals :

4
3
5
8

Explanation

$$\begin{aligned} & \left(\mathrm{x}+\sqrt{\mathrm{x}^3-1}\right)^5+\left(\mathrm{x}-\sqrt{\mathrm{x}^3-1}\right)^5 \\ & =2\left\{{ }^5 \mathrm{C}_0 \cdot \mathrm{x}^5+{ }^5 \mathrm{C}_2 \cdot \mathrm{x}^3\left(\mathrm{x}^3-1\right)+{ }^5 \mathrm{C}_4 \cdot \mathrm{x}\left(\mathrm{x}^3-1\right)^2\right\} \\ & =2\left\{5 \mathrm{x}^7+10 \mathrm{x}^6+\mathrm{x}^5-10 \mathrm{x}^4-10 \mathrm{x}^3+5 \mathrm{x}\right\} \\ & \Rightarrow \alpha=10, \beta=2, \gamma=-20, \delta=10 \\ & \text { Now, } 10 \mathrm{u}+2 \mathrm{v}=18 \\ & -20 \mathrm{u}+10 \mathrm{v}=20 \\ & \Rightarrow \mathrm{u}=1, \mathrm{v}=4 \\ & \mathrm{u}+\mathrm{v}=5 \end{aligned}$$

Comments (0)

Advertisement