JEE MAIN - Mathematics (2025 - 22nd January Evening Shift - No. 20)
Explanation
We are given an ellipse
$$ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, \quad a>b, $$
and a hyperbola
$$ \frac{x^2}{A^2}-\frac{y^2}{B^2}=1. $$
It is stated that “the distance between the foci of $E$ and the foci of $H$ is $2\sqrt{3}$.” A natural interpretation is that the foci of the ellipse are separated by
$$ 2\sqrt{a^2-b^2}, $$
and those of the hyperbola by
$$ 2\sqrt{A^2+B^2}, $$
and each distance is equal to $2\sqrt{3}$. That is, we have
$ 2\sqrt{a^2-b^2}=2\sqrt{3}\quad \Longrightarrow\quad a^2-b^2=3, $
and
$ 2\sqrt{A^2+B^2}=2\sqrt{3}\quad \Longrightarrow\quad A^2+B^2=3. $
We are also given that
$$ a-A=2, $$
and that the ratio of the eccentricities is
$$ \frac{e_E}{e_H}=\frac{1}{3}, $$
where the eccentricity of the ellipse is
$$ e_E=\frac{\sqrt{a^2-b^2}}{a}=\frac{\sqrt{3}}{a}, $$
and the eccentricity of the hyperbola is
$$ e_H=\frac{\sqrt{A^2+B^2}}{A}=\frac{\sqrt{3}}{A}. $$
Thus the ratio becomes
$$ \frac{e_E}{e_H}=\frac{\sqrt{3}/a}{\sqrt{3}/A}=\frac{A}{a}=\frac{1}{3}. $$
This implies
$$ a=3A. $$
Now, using the condition $a-A=2$ together with $a=3A$, we get
$$ 3A-A=2 \quad\Longrightarrow\quad 2A=2 \quad\Longrightarrow\quad A=1. $$
Thus,
$$ a=3. $$
Next, for the ellipse we have
$$ a^2-b^2=3 \quad \Longrightarrow\quad 9-b^2=3 \quad\Longrightarrow\quad b^2=6. $$
For the hyperbola,
$$ A^2+B^2=3 \quad \Longrightarrow\quad 1+B^2=3 \quad\Longrightarrow\quad B^2=2. $$
The length of the latus rectum is given by the following formulas:
For the ellipse:
$$ L_E=\frac{2b^2}{a}, $$
For the hyperbola:
$$ L_H=\frac{2B^2}{A}. $$
Substitute the computed values:
For the ellipse:
$$ L_E=\frac{2\times6}{3}=\frac{12}{3}=4, $$
For the hyperbola:
$$ L_H=\frac{2\times2}{1}=4. $$
The sum of the lengths of the latus rectums is then
$$ L_E+L_H=4+4=8. $$
Thus, the answer is
$$ 8. $$
Comments (0)
