JEE MAIN - Mathematics (2025 - 22nd January Evening Shift - No. 18)

Suppose that the number of terms in an A.P. is $2 k, k \in N$. If the sum of all odd terms of the A.P. is 40 , the sum of all even terms is 55 and the last term of the A.P. exceeds the first term by 27 , then k is equal to:
8
6
4
5

Explanation

$$\begin{aligned} & a_1, a_2, a_3, \ldots \ldots, a_{2 k} \quad \rightarrow \mathrm{A.P.}\\ & \sum_{\mathrm{r}=1}^{\mathrm{k}} \mathrm{a}_{2 \mathrm{r}-1}=40, \sum_{\mathrm{r}=1}^{\mathrm{k}} \mathrm{a}_{2 \mathrm{r}}=55, \mathrm{a}_{2 \mathrm{k}}-\mathrm{a}_1=27 \\ & \frac{\mathrm{k}}{2}\left[2 \mathrm{a}_1+(\mathrm{k}-1) 2 \mathrm{~d}\right]=40, \frac{\mathrm{k}}{2}\left[2 \mathrm{a}_2+(\mathrm{k}-1) 2 \mathrm{~d}\right]=55, \\ & \mathrm{~d}=\frac{27}{2 \mathrm{k}-1} \\ & \mathrm{a}_1=\frac{40}{\mathrm{k}}-(\mathrm{k}-1) \mathrm{d}=\frac{55}{\mathrm{k}}-\mathrm{kd} \\ & \mathrm{~d}=\frac{15}{\mathrm{k}} \Rightarrow \frac{27}{2 \mathrm{k}-1}=\frac{15}{\mathrm{k}} \Rightarrow 9 \mathrm{k}=10 \mathrm{k}-5 \\ & \therefore \mathrm{k}=5 \end{aligned}$$

Comments (0)

Advertisement