JEE Advance - Mathematics (2009 - Paper 1 Offline)
1
Let $$z = \,\cos \,\theta \, + i\,\sin \,\theta $$ . Then the value of $$\sum\limits_{m = 1}^{15} {{\mathop{\rm Im}\nolimits} } ({z^{2m - 1}})\,at\,\theta \, = {2^ \circ }$$ is
Answer
(D)
$${1 \over {4\sin \,{2^ \circ }}}$$
2
Let $$z = x + iy$$ be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $$\overline z {z^3} + z{\overline z ^3} = 350$$ is
Answer
(A)
48
3
Then the value of $$\mu $$ for which the vector $${\overrightarrow {PQ} }$$ is parallel to the plane $$x - 4y + 3z = 1$$ is :
Answer
(A)
$${1 \over 4}$$
4
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ are unit vectors such that $$(\overrightarrow a \times \overrightarrow b )\,.\,(\overrightarrow c \times \overrightarrow d ) = 1$$ and $$\overrightarrow a \,.\,\overrightarrow c = {1 \over 2}$$, then
Answer
(C)
$$\overrightarrow b \,,\overrightarrow d $$ are non-parallel
5
The probability that $$X\ge3$$ equals :
Answer
(B)
$${{25} \over {36}}$$
6
The conditional probability that $$X\ge6$$ given $$X>3$$ equals :
Answer
(D)
$${{25} \over {36}}$$
7
The probability that X = 3 equals
Answer
(A)
$${{25} \over {216}}$$
8
Area of the region bounded by the curve $$y = {e^x}$$ and lines $$x=0$$ and $$y=e$$ is
Answer
B
C
D
9
Let $$f$$ be a non-negative function defined on the interval $$[0,1]$$.
If $$\int\limits_0^x {\sqrt {1 - {{(f'(t))}^2}dt} = \int\limits_0^x {f(t)dt,0 \le x \le 1} } $$, and $$f(0) = 0$$, then
Match the conics in Column I with the statements/expressions in Column II :
Column I
Column II
(A)
Circle
(P)
The locus of the point ($$h,k$$) for which the line $$hx+ky=1$$ touches the circle $$x^2+y^2=4$$.
(B)
Parabola
(Q)
Points z in the complex plane satisfying $$|z+2|-|z-2|=\pm3$$.
(C)
Ellipse
(R)
Points of the conic have parametric representation $$x = \sqrt 3 \left( {{{1 - {t^2}} \over {1 + {t^2}}}} \right),y = {{2t} \over {1 + {t^2}}}$$
(D)
Hyperbola
(S)
The eccentricity of the conic lies in the interval $$1 \le x \le \infty $$.
(T)
Points z in the complex plane satisfying $${\mathop{\rm Re}\nolimits} {(z + 1)^2} = |z{|^2} + 1$$.
Answer
(B)
(A)$$\to$$(P); (B)$$\to$$(S), (T); (C)$$\to$$(R); (D)$$\to$$(Q), (S)
11
If $$a, b$$ and $$c$$ denote the lengths of the sides of the triangle opposite to the angles $$A, B$$ and $$C$$, respectively, then
Answer
B
C
12
The line passing through the extremity $$A$$ of the major axis and extremity $$B$$ of the minor axis of the ellipse $${x^2} + 9{y^2} = 9$$ meets its auxiliary circle at the point $$M$$. Then the area of the triangle with vertices at $$A$$, $$M$$ and the origin $$O$$ is
Answer
(D)
$${{27} \over {10}}$$
13
Tangents drawn from the point P (1, 8) to the circle
$${x^2}\, + \,{y^2}\, - \,6x\, - 4y\, - 11 = 0$$
touch the circle at the points A and B. The equation of the cirumcircle of the triangle PAB is
Let $$L = \mathop {\lim }\limits_{x \to 0} {{a - \sqrt {{a^2} - {x^2}} - {{{x^2}} \over 4}} \over {{x^4}}},a > 0$$. If L is finite, then
Answer
A
C
18
The number of matrices in A is
Answer
(A)
12
19
The number of matrices A in A for which the system of linear equations $$A\left[ {\matrix{
x \cr
y \cr
z \cr
} } \right] = \left[ {\matrix{
1 \cr
0 \cr
0 \cr
} } \right]$$ has a unique solution, is
Answer
(B)
at least 4 but less than 7
20
The number of matrices A in A for which the system of linear equations $$A\left[ {\matrix{
x \cr
y \cr
z \cr
} } \right] = \left[ {\matrix{
1 \cr
0 \cr
0 \cr
} } \right]$$ is inconsistent, is