JEE Advance - Mathematics (2009 - Paper 1 Offline - No. 11)

If $$a, b$$ and $$c$$ denote the lengths of the sides of the triangle opposite to the angles $$A, B$$ and $$C$$, respectively, then
$$b+c=4a$$
$$b+c=2a$$
locus of point $$A$$ is an ellipse
locus of point $$A$$ is a pair of straight lines

Explanation

From this given data, we can write as

$$2\cos \left( {{{B + C} \over 2}} \right)\cos \left( {{{B - C} \over 2}} \right) = 4{\sin ^2}{A \over 2}$$

$$\cos \left( {{{B - C} \over 2}} \right) = 2\sin (A/2)$$

$$ \Rightarrow {{\cos \left( {{{B - C} \over 2}} \right)} \over {\sin A/2}} = 2$$

$$ \Rightarrow {{\sin B + \sin C} \over {\sin A}} = 2$$

$$ \Rightarrow b + c = 2a$$

where a is a constant. Therefore, the locus of point A is an ellipse.

Comments (0)

Advertisement