JEE Advance - Mathematics (2009 - Paper 1 Offline - No. 10)
Match the conics in Column I with the statements/expressions in Column II :
Column I | Column II | ||
---|---|---|---|
(A) | Circle | (P) | The locus of the point ($$h,k$$) for which the line $$hx+ky=1$$ touches the circle $$x^2+y^2=4$$. |
(B) | Parabola | (Q) | Points z in the complex plane satisfying $$|z+2|-|z-2|=\pm3$$. |
(C) | Ellipse | (R) | Points of the conic have parametric representation $$x = \sqrt 3 \left( {{{1 - {t^2}} \over {1 + {t^2}}}} \right),y = {{2t} \over {1 + {t^2}}}$$ |
(D) | Hyperbola | (S) | The eccentricity of the conic lies in the interval $$1 \le x \le \infty $$. |
(T) | Points z in the complex plane satisfying $${\mathop{\rm Re}\nolimits} {(z + 1)^2} = |z{|^2} + 1$$. |
Explanation
(P) We have $${1 \over {{k^2}}} = 4\left( {1 + {{{h^2}} \over {{k^2}}}} \right) \Rightarrow 1 = 4({k^2} + {h^2})$$
Hence, $${h^2} + {k^2} = {\left( {{1 \over 2}} \right)^2}$$ , which is a circle.
(Q) If $$|z - {z_1}| - |z - {z_2}| = k$$, where $$k < |{z_1} - {z_2}|$$, the locus is a hyperbola.
(R) Let $$t = \tan \alpha $$. Hence,
$$x = \sqrt 3 \cos 2\alpha $$ and $$y = \sin 2\alpha $$
or $$\cos 2\alpha = {x \over {\sqrt 3 }}$$ and $$\sin 2\alpha = y$$
$${{{x^2}} \over 3} + {y^2} = {\sin ^2}2\alpha + {\cos ^2}2\alpha = 1$$, which is an ellipse.
(S) If eccentricity is $$[1,\infty]$$, then the conic can be a parabola (if $$e=1$$) and a hyperbola if $$e\in(1,\infty)$$.
(T) Let $$z = x + iy;x,y \in R$$. Hence,
$${(x + 1)^2} - {y^2} = {x^2} + {y^2} + 1$$
$$ \Rightarrow {y^2} = x;$$ which is a parabola
Comments (0)
