JEE Advance - Mathematics (2009 - Paper 1 Offline - No. 8)

Area of the region bounded by the curve $$y = {e^x}$$ and lines $$x=0$$ and $$y=e$$ is
$$e-1$$
$$\int\limits_1^e {\ln \left( {e + 1 - y} \right)dy} $$
$$e - \int\limits_0^1 {{e^x}dx} $$
$$\int\limits_1^e {\ln y\,dy} $$

Explanation

The required area is obtained as follows:

$$\int\limits_1^e {\ln y\,dy = (y\ln y - y)_1^e = (e - e) - \{ - 1\} = 1} $$.

Also,

$$\int\limits_1^e {\ln y\,dy = \int\limits_1^e {\ln (e + 1 - y)dy} } $$

Further, the area bounded by the region is

$$ = e \times 1 - \int\limits_0^e {{e^x}dx} $$

IIT-JEE 2009 Paper 1 Offline Mathematics - Application of Integration Question 42 English Explanation

Comments (0)

Advertisement