JEE MAIN - Mathematics (2025 - 7th April Morning Shift)

1
From a group of 7 batsmen and 6 bowlers, 10 players are to be chosen for a team, which should include atleast 4 batsmen and atleast 4 bowlers. One batsmen and one bowler who are captain and vice-captain respectively of the team should be included. Then the total number of ways such a selection can be made, is
Answer
(C)
155
2
Let $C_1$ be the circle in the third quadrant of radius 3 , that touches both coordinate axes. Let $C_2$ be the circle with centre $(1,3)$ that touches $\mathrm{C}_1$ externally at the point $(\alpha, \beta)$. If $(\beta-\alpha)^2=\frac{m}{n}$ , $\operatorname{gcd}(m, n)=1$, then $m+n$ is equal to
Answer
(A)
22
3
Let P be the parabola, whose focus is $(-2,1)$ and directrix is $2 x+y+2=0$. Then the sum of the ordinates of the points on P, whose abscissa is $-$2, is
Answer
(B)
$\frac{3}{2}$
4
The mean and standard deviation of 100 observations are 40 and 5.1 , respectively. By mistake one observation is taken as 50 instead of 40 . If the correct mean and the correct standard deviation are $\mu$ and $\sigma$ respectively, then $10(\mu+\sigma)$ is equal to
Answer
(C)
449
5
Let ABC be the triangle such that the equations of lines AB and AC be $3 y-x=2$ and $x+y=2$, respectively, and the points B and C lie on $x$-axis. If P is the orthocentre of the triangle ABC , then the area of the triangle PBC is equal to
Answer
(D)
6
6
$\lim _\limits{x \rightarrow 0^{+}} \frac{\tan \left(5(x)^{\frac{1}{3}}\right) \log _e\left(1+3 x^2\right)}{\left(\tan ^{-1} 3 \sqrt{x}\right)^2\left(e^{5(x)^{\frac{4}{3}}}-1\right)}$ is equal to
Answer
(C)
$\frac{1}{3}$
7
Let $y=y(x)$ be the solution curve of the differential equation

$x\left(x^2+e^x\right) d y+\left(\mathrm{e}^x(x-2) y-x^3\right) \mathrm{d} x=0, x>0$, passing through the point $(1,0)$. Then $y(2)$ is equal to :
Answer
(C)
$\frac{4}{4+e^2}$
8
Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.

If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :
Answer
(D)
732
9
The remainder when $\left((64)^{(64)}\right)^{(64)}$ is divided by 7 is equal to
Answer
(D)
1
10
If for $\theta \in\left[-\frac{\pi}{3}, 0\right]$, the points $(x, y)=\left(3 \tan \left(\theta+\frac{\pi}{3}\right), 2 \tan \left(\theta+\frac{\pi}{6}\right)\right)$ lie on $x y+\alpha x+\beta y+\gamma=0$, then $\alpha^2+\beta^2+\gamma^2$ is equal to :
Answer
(A)
75
11

Let the system of equations :

$$ \begin{aligned} & 2 x+3 y+5 z=9 \\ & 7 x+3 y-2 z=8 \\ & 12 x+3 y-(4+\lambda) z=16-\mu \end{aligned}$$

have infinitely many solutions. Then the radius of the circle centred at $(\lambda, \mu)$ and touching the line $4 x=3 y$ is :

Answer
(A)
$\frac{7}{5}$
12
Let the set of all values of $p \in \mathbb{R}$, for which both the roots of the equation $x^2-(p+2) x+(2 p+9)=0$ are negative real numbers, be the interval $(\alpha, \beta]$. Then $\beta-2 \alpha$ is equal to
Answer
(A)
5
13

Among the statements

(S1) : The set $\left\{z \in \mathbb{C}-\{-i\}:|z|=1\right.$ and $\frac{z-i}{z+i}$ is purely real $\}$ contains exactly two elements, and

(S2) : The set $\left\{z \in \mathbb{C}-\{-1\}:|z|=1\right.$ and $\frac{z-1}{z+1}$ is purely imaginary $\}$ contains infinitely many elements.

Answer
(C)
only (S2) is correct
14
The integral $\int_0^\pi \frac{(x+3) \sin x}{1+3 \cos ^2 x} d x$ is equal to
Answer
(B)
$\frac{\pi}{3 \sqrt{3}}(\pi+6)$
15
Let the line L pass through $(1,1,1)$ and intersect the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z}{1}$. Then, which of the following points lies on the line $L$ ?
Answer
(A)
$(7,15,13)$
16
If the area of the region bounded by the curves $y=4-\frac{x^2}{4}$ and $y=\frac{x-4}{2}$ is equal to $\alpha$, then $6 \alpha$. equals
Answer
(B)
250
17
If the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x}{1}=\frac{y}{\alpha}=\frac{z-5}{1}$ is $\frac{5}{\sqrt{6}}$, then the sum of all possible values of $\alpha$ is
Answer
(C)
$-3$
18
Let $x=-1$ and $x=2$ be the critical points of the function $f(x)=x^3+a x^2+b \log _{\mathrm{e}}|x|+1, x \neq 0$. Let $m$ and M respectively be the absolute minimum and the absolute maximum values of $f$ in the interval $\left[-2,-\frac{1}{2}\right]$. Then $|\mathrm{M}+m|$ is equal to $\left(\right.$ Take $\left.\log _{\mathrm{e}} 2=0.7\right):$
Answer
(A)
21.1
19
Let the angle $\theta, 0<\theta<\frac{\pi}{2}$ between two unit vectors $\hat{a}$ and $\hat{b}$ be $\sin ^{-1}\left(\frac{\sqrt{65}}{9}\right)$. If the vector $\vec{c}=3 \hat{a}+6 \hat{b}+9(\hat{a} \times \hat{b})$, then the value of $9(\vec{c} \cdot \hat{a})-3(\vec{c} \cdot \hat{b})$ is
Answer
(B)
29
20
Let $x_1, x_2, x_3, x_4$ be in a geometric progression. If $2,7,9,5$ are subtracted respectively from $x_1, x_2, x_3, x_4$, then the resulting numbers are in an arithmetic progression. Then the value of $\frac{1}{24}\left(x_1 x_2 x_3 x_4\right)$ is:
Answer
(B)
216
21
The number of singular matrices of order 2 , whose elements are from the set $\{2,3,6,9\}$, is __________.
Answer
36
22
The number of relations on the set $A=\{1,2,3\}$, containing at most 6 elements including $(1,2)$, which are reflexive and transitive but not symmetric, is __________.
Answer
6
23
The number of points of discontinuity of the function $f(x)=\left[\frac{x^2}{2}\right]-[\sqrt{x}], x \in[0,4]$, where $[\cdot]$ denotes the greatest integer function, is ________.
Answer
8
24
For $n \geq 2$, let $S_n$ denote the set of all subsets of $\{1,2, \ldots, n\}$ with no two consecutive numbers. For example $\{1,3,5\} \in S_6$, but $\{1,2,4\} \notin S_6$. Then $n\left(S_5\right)$ is equal to ________
Answer
13
25
Consider the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ having one of its focus at $\mathrm{P}(-3,0)$. If the latus ractum through its other focus subtends a right angle at P and $a^2 b^2=\alpha \sqrt{2}-\beta, \alpha, \beta \in \mathbb{N}$, then $\alpha+\beta$ is _________ .
Answer
1944