JEE MAIN - Mathematics (2025 - 7th April Morning Shift - No. 20)
Explanation
Given the sequence $x_1, x_2, x_3, x_4$ in geometric progression:
$x_1 = a$
$x_2 = ar$
$x_3 = ar^2$
$x_4 = ar^3$
When you subtract 2, 7, 9, and 5 from $x_1, x_2, x_3, x_4$ respectively, the sequence becomes an arithmetic progression. Thus, the new sequence is:
$a - 2$
$ar - 7$
$ar^2 - 9$
$ar^3 - 5$
For these to form an arithmetic progression, the common differences must be equal, so:
$ (ar - 7) - (a - 2) = (ar^2 - 9) - (ar - 7) $
Simplifying gives:
$ a(r - 1) - 5 = ar(r - 1) - 2 $
$ a(r - 1)(r - 1) = -3 \quad (i) $
$ (ar - 7) - (a - 2) = (ar^3 - 5) - (ar^2 - 9) $
Simplifying gives:
$ a(r - 1) - 5 = ar^2(r - 1) + 4 $
$ a(r - 1)(r^2 - 1) = -9 \quad (ii) $
Using the ratio of equations (ii) and (i):
$ \frac{a(r - 1)(r^2 - 1)}{a(r - 1)(r - 1)} = \frac{-9}{-3} $
$ r + 1 = 3 \implies r = 2 $
Plugging back into equation (i):
$ a(1)(1) = -3 \implies a = -3 $
So, the sequence $x_1, x_2, x_3, x_4$ is:
$x_1 = -3$
$x_2 = -6$
$x_3 = -12$
$x_4 = -24$
The expression for $\frac{1}{24}(x_1 \cdot x_2 \cdot x_3 \cdot x_4)$ is:
$ \frac{1}{24}((-3) \cdot (-6) \cdot (-12) \cdot (-24)) = 216 $
Comments (0)
