JEE MAIN - Mathematics (2025 - 7th April Morning Shift - No. 8)

Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.

If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :
820
866
750
732

Explanation

$$\begin{aligned} & |\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|=81 \\ & =|A|^{(n-1)^3}=(3)^4 \Rightarrow|A|^8=3^4 \Rightarrow|A|=3^{1 / 2} \\ & |\operatorname{adj}(\operatorname{adj} A)|^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)} \\ & {\left[|A|^{(n-1)^2}\right]^{\frac{(n-1)^2}{2}}=|A|^{3 n^2-5 n-4}} \\ & |A|^{2(n-1)^2}=|A|^{3 n^2-5 n-4} \\ & \Rightarrow 2(n-1)^2=3 n^2-5 n-4 \\ & \quad n^2-n-6=0 \\ & \Rightarrow n=-2,3 \\ & \sum_{x \leftarrow 5}\left|A^{n^2+n}\right|=\left|A^2\right|+\left|A^{12}\right| \\ & =3+3^6=732 \end{aligned}$$

Comments (0)

Advertisement